Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Otte, C.

  • Google
  • 1
  • 5
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011In-situ x-ray diffraction studies on post-deposition vacuum-annealing of ultra-thin iron oxide films19citations

Places of action

Chart of shared publication
Bertram, F.
1 / 12 shared
Wollschläger, Joachim
1 / 25 shared
Deiter, C.
1 / 5 shared
Pflaum, K.
1 / 2 shared
Suendorf, M.
1 / 2 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Bertram, F.
  • Wollschläger, Joachim
  • Deiter, C.
  • Pflaum, K.
  • Suendorf, M.
OrganizationsLocationPeople

article

In-situ x-ray diffraction studies on post-deposition vacuum-annealing of ultra-thin iron oxide films

  • Bertram, F.
  • Wollschläger, Joachim
  • Deiter, C.
  • Otte, C.
  • Pflaum, K.
  • Suendorf, M.
Abstract

<jats:p>A maghemite (γ-Fe2O3) film of 8.3 nm thickness is epitaxially grown on MgO(001) single crystal substrate by reactive molecular beam epitaxy. Chemical composition and crystal structure of the surface was studied by x-ray photoelectron spectroscopy and low energy electron diffraction, respectively. Afterwards the sample was moved to a heating cell for in situ x-ray diffraction experiments on the post-deposition annealing process in high-vacuum to study structural phase transitions of the iron oxide film. The iron oxide film is reduced with increasing temperature. This reduction occurs in two steps that are accompanied by structural transitions. The first step is a reduction from γ-Fe2O3 to Fe3O4 at 360 °C and the second step is the reduction from Fe3O4 to FeO at 410 °C.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • single crystal
  • phase
  • x-ray diffraction
  • experiment
  • x-ray photoelectron spectroscopy
  • reactive
  • phase transition
  • chemical composition
  • iron
  • annealing
  • low energy electron diffraction