Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thije, R. H. W. Ten

  • Google
  • 26
  • 20
  • 177

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (26/26 displayed)

  • 2013Intra-Ply Shear Locking in Finite Element Simulationscitations
  • 2012Shear Characterisation of UD Thermoplastic Compositescitations
  • 2012Failure Modeling of Thermoplastic Butt-Joint Stiffened Panels by Quasi-Static Loadingcitations
  • 2011Friction in Forming of UD Composites8citations
  • 2011Friction in Forming of UD Compositescitations
  • 2010Finite element simulations of laminated composites forming processescitations
  • 2010Forming predictions of UD reinforced thermoplastic laminatescitations
  • 2010Constitutive modelling of UD reinforced thermoplastic laminatescitations
  • 2009A multi-layer triangular membrane finite element for the forming simulation of laminated composites86citations
  • 2009Models for Textile Composites Formingcitations
  • 2009Characterisation and modelling friction at the tool-ply interface for thermoplastic woven compositescitations
  • 2008Tool-ply friction in thermoplastic composite formingcitations
  • 2008Tool-ply friction in thermoplastic composite forming35citations
  • 2008Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials48citations
  • 2007Intra-ply shear lockingcitations
  • 2006Large deformation simulation of anisotropic materialcitations
  • 2005Forming simulation of febre reinforced compositescitations
  • 2005Drape Modelling and Experimental Validationcitations
  • 2005Finite element simulation of draping with non-crimp fabricscitations
  • 2005Drape simulation of non-crimp fabricscitations
  • 2004Permeability prediction of non-crimp fabrics based on a geometric modelcitations
  • 2003Permeability Prediction of Non-Crimp Fabrics Based on a Geometric Modelcitations
  • 2003Appendix II: Permeability, drapeability and compressibility - Three Interrelated Propertiescitations
  • 2003Material characterisation for finite element simulations of draping with non-crimp fabricscitations
  • 2002Definition o developed RVE (unit cell) modelscitations
  • 2002Springback analysis of doubly curved GLARE panelscitations

Places of action

Chart of shared publication
Wolthuizen, D. J.
1 / 4 shared
Akkerman, Remko
26 / 423 shared
Haanappel, Sebastiaan
2 / 12 shared
Rietman, Bert
2 / 14 shared
Sachs, Ulrich
2 / 11 shared
Ilin, Kirill
1 / 1 shared
Warnet, Laurent L.
2 / 54 shared
De Rooij, M. B.
1 / 6 shared
Haanappel, S. P.
2 / 13 shared
Ten Thije, R. H. W.
4 / 15 shared
De Rooij, Matthijn
2 / 38 shared
Sachs, U.
1 / 14 shared
Long, Andrew C.
1 / 2 shared
Harrison, P.
1 / 16 shared
Ubbink, M. P.
2 / 3 shared
Meer, L. Van Der
2 / 2 shared
Huetink, Han
1 / 13 shared
Loendersloot, Richard
7 / 53 shared
Lomov, S. V.
2 / 47 shared
Peeters, A.
1 / 4 shared
Chart of publication period
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002

Co-Authors (by relevance)

  • Wolthuizen, D. J.
  • Akkerman, Remko
  • Haanappel, Sebastiaan
  • Rietman, Bert
  • Sachs, Ulrich
  • Ilin, Kirill
  • Warnet, Laurent L.
  • De Rooij, M. B.
  • Haanappel, S. P.
  • Ten Thije, R. H. W.
  • De Rooij, Matthijn
  • Sachs, U.
  • Long, Andrew C.
  • Harrison, P.
  • Ubbink, M. P.
  • Meer, L. Van Der
  • Huetink, Han
  • Loendersloot, Richard
  • Lomov, S. V.
  • Peeters, A.
OrganizationsLocationPeople

booksection

Friction in Forming of UD Composites

  • De Rooij, M. B.
  • Haanappel, S. P.
  • Thije, R. H. W. Ten
  • Akkerman, Remko
  • Ten Thije, R. H. W.
  • De Rooij, Matthijn
  • Sachs, U.
Abstract

Inter‐ply and tool/ply friction play a dominant role in hot stamp forming of UD fiber‐reinforced thermoplastic laminates. This research treats friction measurements of a PEEK‐AS4 composite system. To this end, an in‐house developed friction tester is utilized to pull a laminate through two heat controlled clamping platens. The friction coefficient is determined by relating the clamp force to the pull force. The geometry of the gap between the clamping platens is monitored with micrometer accuracy. A first approach to describe the relation between the geometry and frictional behavior is undertaken by applying a standard thin‐film theory for hydrodynamic lubrication. Experimental measurements showed that the thin‐film theory does not entirely cover the underlying physics. Thus a second model is utilized, which employs a Leonov‐model to describe the shear deformation of the matrix material, while its viscosity is described with a multi‐mode Maxwell model. The combination of both models shows the potential to capture the complete frictional behavior.

Topics
  • impedance spectroscopy
  • theory
  • composite
  • viscosity
  • forming
  • thermoplastic