People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Presz, Wojciech
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Ultrasonic Atomization as a Method for Testing Material Properties of Liquid Metals
- 2020Flexible system for micro-clinching processes design and analysiscitations
- 2020Vibration asisted progresive-die micro-blanking
- 2019Ultrasonic vibrations as an impulse for glass transition in microforming of bulk metallic glasscitations
- 2018Determination of material distribution in heading process of small bimetallic barcitations
- 2018THE METHOD OF MICRO-UPSETTING IN UNEVEN TEMPERATURE DISTRIBUTION
- 2018Dynamic effect in ultrasonic assisted micro-upsettingcitations
- 2017ULTRASONIC ASSISTED MICROFORMING
- 2017Application of Complex Micro-die for Extrusion of Micro-rivets for Micro-joining
- 2017Application of semi-physical modeling of interface surface roughness in design of pre-stressed microforming diescitations
- 2016New method for micro-clinching analysis
- 2012Mikrostructure transformations in austempered ductile iron during deformation by dynamic hardness test
- 2011Influence of Micro‐Rivet Manufacturing Process on Quality of Micro‐Jointcitations
- 2010Analysis of the influence of a rivet yield stress distribution on the micro-SPR joint - initial approachcitations
Places of action
Organizations | Location | People |
---|
article
Influence of Micro‐Rivet Manufacturing Process on Quality of Micro‐Joint
Abstract
One of the modern industry endeavors is to be able to manufacture smaller size components using traditional or new technologies. Smaller components usually need special assembly techniques. New course of mechanical joining improvement is to develop process modification for decreased scale, i.e. micro‐joining. Very interesting problems arise with self‐piercing riveting (SPR) method, because one of the factors influencing SPR joint strength is rivet material properties. Rivet production by forming produces certain distribution of stress/strain field within cross‐section of a rivet, influencing the process of SPR joint formation in micro‐joining. Results of initial analysis of micro‐joint strength are presented in the paper. Stress/strain field obtained during rivet production is taken into account in numerical simulation of micro‐riveting process. Joint loading test was numerically modeled. Simulations consisted of three phases: manufacturing of the rivet, forming a joint and strength test. Stress strain fields were superimposed over the joint on every stage. Influence of the manufacturing method of the rivet on the joint quality and strength was observed. The commercial FEM software MSC‐Marc is used for numerical simulations.