Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Balanov, A.

  • Google
  • 1
  • 5
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure14citations

Places of action

Chart of shared publication
Ritchie, D. A.
1 / 18 shared
Farrer, I.
1 / 22 shared
Samardak, A. S.
1 / 2 shared
Janson, N. B.
1 / 1 shared
Nogaret, Alain
1 / 5 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Ritchie, D. A.
  • Farrer, I.
  • Samardak, A. S.
  • Janson, N. B.
  • Nogaret, Alain
OrganizationsLocationPeople

article

Spiking computation and stochastic amplification in a neuron-like semiconductor microstructure

  • Ritchie, D. A.
  • Farrer, I.
  • Balanov, A.
  • Samardak, A. S.
  • Janson, N. B.
  • Nogaret, Alain
Abstract

We have demonstrated the proof of principle of a semiconductor neuron, which has dendrites, axon, and a soma and computes information encoded in electrical pulses in the same way as biological neurons. Electrical impulses applied to dendrites diffuse along microwires to the soma. The soma is the active part of the neuron, which regenerates input pulses above a voltage threshold and transmits them into the axon. Our concept of neuron is a major step forward because its spatial structure controls the timing of pulses, which arrive at the soma. Dendrites and axon act as transmission delay lines, which modify the information, coded in the timing of pulses. We have finally shown that noise enhances the detection sensitivity of the neuron by helping the transmission of weak periodic signals. A maximum enhancement of signal transmission was observed at an optimum noise level known as stochastic resonance. The experimental results are in excellent agreement with simulations of the FitzHugh-Nagumo model. Our neuron is therefore extremely well suited to providing feedback on the various mathematical approximations of neurons and building functional networks.

Topics
  • impedance spectroscopy
  • microstructure
  • simulation
  • semiconductor