People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Zhi-Peng
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2011Superstructure formation and variation in Ni-GDC cermet anodes in SOFCcitations
- 2011Direct evidence of dopant segregation in Gd-doped ceriacitations
- 2011The diffusions and associated interfacial layer formation between thin film electrolyte and cermet anode in IT-SOFCcitations
- 2011Diffusion and segregation along grain boundary at the electrolyte–anode interface in IT-SOFCcitations
- 2011Two types of diffusions at the cathode/electrolyte interface in IT-SOFCscitations
- 2011Mutual diffusion occurring at the interface between La0.6Sr0.4Co0.8Fe0.2O3 cathode and Gd-doped ceria electrolyte during IT-SOFC cell preparationcitations
- 2011Mutual diffusion and microstructure evolution at the electrolyte−anode interface in intermediate temperature solid oxide fuel cellcitations
Places of action
Organizations | Location | People |
---|
article
Direct evidence of dopant segregation in Gd-doped ceria
Abstract
Microstructures and segregations of dopants and associated oxygen vacancies in gadolinium-doped ceria (GDC) have been characterized by high-resolution transmission electron microscopy (HRTEM) and scanning TEM (STEM). Diffuse scattering was detected in 25 at. % GDC (25GDC) in comparison to 10GDC, which is ascribed to nanodomain formation in 25GDC. HRTEM, dark-field, and STEM Z-contrast imaging investigations all provide direct evidence for dopant segregation in doped ceria. It is illustrated that dopant cations cannot only segregate in grain interior forming larger nanodomains but also at grain boundary forming smaller ones. Detailed analyses about nanodomain formation and related dopant segregation behaviors are then elucidated.