People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czarnowska, E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2017NiTi shape-memory alloy oxidized in low-temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applicationscitations
- 2015The importance of surface topography for the biological properties of nitrided diffusion layers Produced on Ti6Al4V titanium alloycitations
- 2011Oxynitrided Surface Layer Produced On Ti6Al4V Titanium Alloy Under Low Temperature Glow Discharge Conditions For Medical Applications
Places of action
Organizations | Location | People |
---|
article
Oxynitrided Surface Layer Produced On Ti6Al4V Titanium Alloy Under Low Temperature Glow Discharge Conditions For Medical Applications
Abstract
In spite that titanium oxides increase biocompatibility of titanium implants but their functional life is limited due to the problems arising from brittles and metalosis. Therefore technology, that allow to produce composite surface layer with controlled microstructure, chemical and phase composition and surface morphology on titanium alloy and eliminates the oxides disadvantages has been existing till now is searched. The requirements of titanium and its alloys implants can be fulfill by the low—temperature glow discharge assisted oxynitriding.The paper describes the surface layer of TiO2+TiN+Ti2N+αTi(N) type produced at temperature 680° C that preserves mechanical properties of titanium alloy Ti6Al4V. Characteristics of produced diffusion multi‐phase surface layers in range of phase composition, microstructure (SEM, TEM, XRD) and its properties, such as frictional wear resistance are presented. The biological properties in dependency to the applied sterilization method are also analyzed.Properties of produced surface layers are discussed with reference to titanium alloy. The obtained data show that produced surface layers improves titanium alloy properties both frictional wear and biological. Preliminary in vitro examinations show good biocompatibility and antithrombogenic properties.