People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Plum, Markus A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Resonance enhanced dynamic light scattering
Abstract
We present a novel light scattering setup that enables probing of dynamics near solid surfaces. An evanescent wave generated by a surface plasmon resonance in a metal layer is the incident light field in the dynamic light scattering experiment. The combination of surface plasmon resonance spectroscopy and dynamic light scattering leads to a spatiotemporal resolution extending a few hundred nanometers from the surface and from microseconds to seconds. The comparison with evanescent wave dynamic light scattering identifies the advantages of the presented technique, e.g., surface monitoring, use of metal surfaces, and biorelevant systems. For both evanescent wave geometries, we define the scattering wave vector necessary for the analysis of the experimental relaxation functions.