People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maksimenko, Sergey A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Terahertz sensing with carbon nanotube layers coated on silica fibers: Carrier transport versus nanoantenna effects
Abstract
<jats:p>Carbon nanotube layers prepared as coatings on silica fibers are found to be suitable for terahertz detection in 0.5–7.3 THz range within temperatures of 4.2–70 K. In time-domain of terahertz excitation, two following constituents in the photoresponse are discriminated: the first one is attributed to the bolometric effect while the other one is related to the photoconductivity caused by the terahertz-induced hopping effect. In frequency domain, nonmonotonic behavior of the photoconductivity is associated with prevailing carbon nanotube-induced antenna effects in the electronic transport. The experimental observations are supported by theoretical estimates.</jats:p>