Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kong, Huijun

  • Google
  • 1
  • 8
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010In-plane thermal and thermoelectric properties of misfit-layered [(PbSe)(0.99)](x)(WSe2)(x) superlattice thin films41citations

Places of action

Chart of shared publication
Johnson, David C.
1 / 5 shared
Seol, Jae Hun
1 / 5 shared
Pettes, Michael T.
1 / 3 shared
Mavrokefalos, Anastassios
1 / 2 shared
Shi, Li
1 / 6 shared
Beekman, Matthew
1 / 1 shared
Lin, Qiyin
1 / 1 shared
Lee, Yong J.
1 / 1 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Johnson, David C.
  • Seol, Jae Hun
  • Pettes, Michael T.
  • Mavrokefalos, Anastassios
  • Shi, Li
  • Beekman, Matthew
  • Lin, Qiyin
  • Lee, Yong J.
OrganizationsLocationPeople

article

In-plane thermal and thermoelectric properties of misfit-layered [(PbSe)(0.99)](x)(WSe2)(x) superlattice thin films

  • Johnson, David C.
  • Seol, Jae Hun
  • Kong, Huijun
  • Pettes, Michael T.
  • Mavrokefalos, Anastassios
  • Shi, Li
  • Beekman, Matthew
  • Lin, Qiyin
  • Lee, Yong J.
Abstract

The in-plane thermal conductivity is measured to be three times lower in misfit-layered [(PbSe)(0.99)](x)(WSe2)(x) superlattice thin films than disordered-layered WSe2 because of interface scattering despite a higher cross-plane value in the former than the latter. While having little effect on the in-plane thermal conductivity, annealing the p-type [(PbSe)(0.99)](2)(WSe2)(2) films in Se increases the in-plane Seebeck coefficient and electrical conductivity because of decreased defect and hole concentrations. Increasing interface density of the annealed films by decreasing x from 4 to 2 has weak influence on the in-plane thermal conductivity but increases the Seebeck coefficient and decreases the room-temperature electrical conductivity. (C)2010 American Institute of Physics. [doi:10.1063/1.3428577]

Topics
  • density
  • impedance spectroscopy
  • thin film
  • layered
  • defect
  • annealing
  • thermal conductivity
  • electrical conductivity