People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kong, Huijun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
In-plane thermal and thermoelectric properties of misfit-layered [(PbSe)(0.99)](x)(WSe2)(x) superlattice thin films
Abstract
The in-plane thermal conductivity is measured to be three times lower in misfit-layered [(PbSe)(0.99)](x)(WSe2)(x) superlattice thin films than disordered-layered WSe2 because of interface scattering despite a higher cross-plane value in the former than the latter. While having little effect on the in-plane thermal conductivity, annealing the p-type [(PbSe)(0.99)](2)(WSe2)(2) films in Se increases the in-plane Seebeck coefficient and electrical conductivity because of decreased defect and hole concentrations. Increasing interface density of the annealed films by decreasing x from 4 to 2 has weak influence on the in-plane thermal conductivity but increases the Seebeck coefficient and decreases the room-temperature electrical conductivity. (C)2010 American Institute of Physics. [doi:10.1063/1.3428577]