People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thiel, Bradley L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Interfacial mixing and internal structure of Pt-containing nanocomposites grown by room temperature electron beam induced deposition
Abstract
<jats:p>Material grown by room temperature electron beam induced deposition (EBID) using (CH3)3CH3C5H4Pt precursor consists of platinum nanocrystals embedded in an amorphous matrix. The crystallites are shown to intermix with the amorphous oxide on a Si substrate. The extent of intermixing scales with the electron energy density delivered to the material during growth. Dependencies on electron flux, fluence, and exposure time indicate that the intermixing process is athermal, electron-activated, and rate limited by mass transport inside the solid. Furthermore, the degree of deposit crystallinity is shown to scale with the electron flux and fluence used for EBID. We discuss mechanisms behind the observed changes in nanostructure and implications for the growth of functional materials by EBID.</jats:p>