People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
James, D. Randy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2012Epoxy nanodielectrics fabricated with in situ and ex situ techniquescitations
- 2010DIELECTRIC PROPERTIES OF VARIOUS NANOCOMPOSITE MATERIALS
- 2010Breakdown properties of epoxy nanodielectriccitations
- 2009Polyamide 66 as a cryogenic dielectriccitations
- 2009Electrical properties of a polymeric nanocomposite with in-situ synthesized nanoparticlescitations
- 2008Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectricscitations
- 2007Enhancement of dielectric strength in nanocompositescitations
- 2006Electrical properties of epoxy resin based nano-compositescitations
Places of action
Organizations | Location | People |
---|
document
DIELECTRIC PROPERTIES OF VARIOUS NANOCOMPOSITE MATERIALS
Abstract
Composite materials based on polymers are used in various engineering applications due to their ability to be tailored for a specific application. As a result a composite could be selected or designed for a high performance part such as field grading applications in high voltage technology. Presently, there exists no commercially available material for electric field control. For this reason in this study we characterize a polymeric system composed of a thermoplast polymer filled with nanometer size ceramic particles. Since it is hard to tailor or to predict properties of composites theoretically, an Edisonian approach is employed. Composites with different filler weight concentrations are prepared and their dielectric performance are characterized. Impedance spectroscopy technique at a constant frequency is used to determine the dielectric properties of the composites at low temperatures. Measurement results and potential applications of the composite systems are presented.