People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Polizos, Georgios
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2018Anti-soiling and highly transparent coatings with multi-scale featurescitations
- 2017Energy Efficient and Durable Skylights and Roof Windows
- 2012Effect of polymer–nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocompositescitations
- 2012Epoxy nanodielectrics fabricated with in situ and ex situ techniquescitations
- 2010ELECTRICAL AND MECHANICAL PROPERTIES OF TITANIUM DIOXIDE NANOPARTICLE FILLED EPOXY RESIN COMPOSITEScitations
- 2010Properties of a nanodielectric cryogenic resincitations
- 2010Electrical properties of a thermoplastic polyurethane filled with titanium dioxide nanoparticles
- 2010DIELECTRIC PROPERTIES OF VARIOUS NANOCOMPOSITE MATERIALS
- 2010VERY LOW FREQUENCY BREAKDOWN PROPERTIES OF ELECTRICAL INSULATION MATERIALS AT CRYOGENIC TEMPERATUREScitations
- 2010Breakdown properties of epoxy nanodielectriccitations
- 2010Physical properties of epoxy resin/titanium dioxide nanocompositescitations
- 2009Polyamide 66 as a cryogenic dielectriccitations
- 2009Very low frequency breakdown strengths of electrical insulation materials at cryogenic temperaturescitations
- 2009Electrical properties of a polymeric nanocomposite with in-situ synthesized nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Properties of a nanodielectric cryogenic resin
Abstract
Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO2) nanoparticles (≤5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO2 nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.