Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meuler, Adam J.

  • Google
  • 6
  • 5
  • 576

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2009Polydispersity effects in poly(isoprene- b -styrene- b -ethylene oxide) triblock terpolymers30citations
  • 2009Bicontinuous polymeric microemulsions from polydisperse diblock copolymers33citations
  • 2008Polydispersity and block copolymer self-assembly438citations
  • 2008Polydispersity-induced stabilization of the core-shell gyroid29citations
  • 2007Polydispersity-driven transition from the orthorhombic Fddd network to lamellae in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers27citations
  • 2007Synthesis of monodisperse α-hydroxypoly(styrene) in hydrocarbon media using a functional organolithium19citations

Places of action

Chart of shared publication
Evans, Christopher M.
3 / 3 shared
Qin, Jian
2 / 5 shared
Bates, Frank S.
5 / 90 shared
Wolf, Lynn M.
1 / 1 shared
Lynd, Nathaniel A.
1 / 7 shared
Chart of publication period
2009
2008
2007

Co-Authors (by relevance)

  • Evans, Christopher M.
  • Qin, Jian
  • Bates, Frank S.
  • Wolf, Lynn M.
  • Lynd, Nathaniel A.
OrganizationsLocationPeople

article

Polydispersity effects in poly(isoprene- b -styrene- b -ethylene oxide) triblock terpolymers

  • Evans, Christopher M.
  • Qin, Jian
  • Meuler, Adam J.
  • Bates, Frank S.
Abstract

<p>Four hydroxyl-terminated poly(isoprene- b -styrene) diblock copolymers with comparable molecular weights and compositions (equivalent volume fractions of polyisoprene and polystyrene) but different polystyrene block polydispersity indices (M <sub>w</sub> / M <sub>n</sub> =1.06,1.16,1.31,1.44) were synthesized by anionic polymerization using either sec-butyllithium or the functional organolithium 3-triisopropylsilyloxy-1-propyllithium. Poly(ethylene oxide) (PEO) blocks were grown from the end of each of these parent diblocks to yield four series of poly(isoprene- b -styrene- b -ethylene oxide) (ISO) triblock terpolymers that were used to interrogate the effects of varying the polydispersity of the middle bridged polystyrene block. In addition to the neat triblock samples, 13 multicomponent blends were prepared at four different compositions from the ISO materials containing a polystyrene segment with M <sub>w</sub> / M <sub>n</sub> =1.06; these blends were used to probe the effects of increasing the polydispersity of the terminal PEO block. The melt-phase behavior of all samples was characterized using small-angle X-ray scattering and dynamic mechanical spectroscopy. Numerous polydispersity-driven morphological transitions are reported, including transitions from lamellae to core-shell gyroid, from core-shell gyroid to hexagonally packed cylinders, and from network morphologies [either O <sup>70</sup> (the orthorhombic Fddd network) or core-shell gyroid] to lamellae. Domain periodicities and order-disorder transition temperatures also vary with block polydispersities. Self-consistent field theory calculations were performed to supplement the experimental investigations and help elucidate the molecular factors underlying the polydispersity effects. The consequences of varying the polydispersity of the terminal PEO block are comparable to the polydispersity effects previously reported in AB diblock copolymers. Namely, domain periodicities increase with increasing polydispersity and domain interfaces tend to curve toward polydisperse blocks. The changes in phase behavior that are associated with variations in the polydispersity of the middle bridged polystyrene block, however, are not analogous to those reported in AB diblock copolymers, as increases in this middle block polydispersity are not always accompanied by (i) increased domain periodicities and (ii) a tendency for domain interfaces to curve toward the polydisperse domain. These results highlight the utility of polydispersity as a tool to tune the phase behavior of ABC block terpolymers.</p>

Topics
  • theory
  • melt
  • molecular weight
  • copolymer
  • size-exclusion chromatography
  • polydispersity
  • X-ray scattering
  • lamellae
  • spectroscopy
  • gyroid