Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kiss, L.

  • Google
  • 2
  • 13
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Development of a computer-aided design and finite element analysis combined method for affordable spine surgical navigation with 3D-printed customized templatecitations
  • 2009Correlation between microstructure and temperature dependence of magnetic properties in Fe60 Co18 (Nb,Zr) 6 B15 Cu1 alloy series11citations

Places of action

Chart of shared publication
Pokorni, A. J.
1 / 1 shared
Bartos, M.
1 / 2 shared
Eltes, P. E.
1 / 1 shared
Lazary, A.
1 / 1 shared
Varga, P. P.
1 / 1 shared
Hajnal, B.
1 / 1 shared
Lacroix, D.
1 / 6 shared
Ferenc, Jarosław
1 / 11 shared
Kulik, Tadeusz
1 / 39 shared
Conde, C. F.
1 / 12 shared
Franco, V.
1 / 15 shared
Blazquez, J. S.
1 / 5 shared
Conde, A.
1 / 20 shared
Chart of publication period
2021
2009

Co-Authors (by relevance)

  • Pokorni, A. J.
  • Bartos, M.
  • Eltes, P. E.
  • Lazary, A.
  • Varga, P. P.
  • Hajnal, B.
  • Lacroix, D.
  • Ferenc, Jarosław
  • Kulik, Tadeusz
  • Conde, C. F.
  • Franco, V.
  • Blazquez, J. S.
  • Conde, A.
OrganizationsLocationPeople

article

Correlation between microstructure and temperature dependence of magnetic properties in Fe60 Co18 (Nb,Zr) 6 B15 Cu1 alloy series

  • Ferenc, Jarosław
  • Kulik, Tadeusz
  • Conde, C. F.
  • Franco, V.
  • Blazquez, J. S.
  • Kiss, L.
  • Conde, A.
Abstract

<p>Temperature dependence of magnetic properties of nanocrystalline Fe60 Co18 Cu1 B15 Nb6-x Zrx (x=0, 3, 6) alloys has been studied at different stages of devitrification. Transmission electron microscopy shows nanocrystals of the size ∼5 nm, which remains almost constant along the nanocrystallization process. Curie temperature of the residual amorphous phase decreases as nanocrystallization progresses for all the studied alloys. Thermal dependence of the exchange stiffness constant is obtained from the measurement of specific magnetization and coercivity as a function of crystalline fraction and temperature for the three studied alloys. © 2009 American Institute of Physics.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • phase
  • transmission electron microscopy
  • magnetization
  • coercivity
  • Curie temperature