People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Antoszewski, Jaroslaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Narrow bandgap HgCdTe technology for IR sensing & imaging focal plane arrayscitations
- 2019Interdiffusion Effects on Bandstructure in HgTe-CdTe Superlattices for VLWIR Imaging Applicationscitations
- 2018GaSb-based II-VI semiconductors for application in next generation infrared detectors
- 2018Optimization of Superlattice Barrier HgCdTe nBn Infrared Photodetectors Based on an NEGF Approachcitations
- 2017Large-Area MEMS Tunable Fabry-Perot Filters for Multi/Hyperspectral Infrared Imagingcitations
- 2016Superlattice Barrier HgCdTe nBn Infrared Photodetectorscitations
- 2015Investigation of ICPECVD Silicon Nitride Films for HgCdTe Surface Passivationcitations
- 2014GaSb: A new alternative substrate for epitaxial growth of HgCdTecitations
- 2009Third-generation infrared photodetector arrayscitations
- 2007Dielectric thin films for MEMS-based optical sensorscitations
- 2006Stress in low-temperature plasma enhanced chemical vapour deposited silicon nitride thin filmscitations
- 2004Laser-Beam-Induced Current Mapping of Spatial Nonuniformities in Molecular Beam Epitaxy As-Grown HgCdTecitations
- 2004Dark Currents in Long Wavelength Infrared HgCdTe Gated Photodiodescitations
Places of action
Organizations | Location | People |
---|
article
Third-generation infrared photodetector arrays
Abstract
Hitherto, two distinct families of multielement detector arrays have been used for infrared (IR) imaging system applications: linear arrays for scanning systems (first generation) and two-dimensional arrays for staring systems (second generation). Nowadays, third-generation IR systems are being developed which, in the common understanding, provide enhanced capabilities such as larger numbers of pixels, higher frame rates, better thermal resolution, multicolor functionality, and/or other on-chip signal-processing functions. In this paper, fundamental and technological issues associated with the development and exploitation of third-generation IR photon detectors are discussed. In this class of detectors the two main competitors, HgCdTe photodiodes and quantum-well photoconductors, are considered. This is followed by discussions focused on the most recently developed focal plane arrays based on type-II strained-layer superlattices and quantum dot IR photodetectors. The main challenges facing multicolor devices are concerned with complicated device structures, thicker and multilayer material growth, and more difficult device fabrication, especially for large array sizes and/or small pixel dimensions. This paper also presents and discusses the ongoing detector technology challenges that are being addressed in order to develop third-generation infrared photodetector arrays.