People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wei, Guodan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells
Abstract
<jats:p>We demonstrate high open circuit voltage photovoltaic cells achieved by reducing the electron leakage current through the introduction of both organic and inorganic electron blocking layers between the donor layer and the anode contact. As an example, the blocking layers reduce the dark current in tin (II) phthalocyanine (SnPc)∕C60 solar cells with response across the visible and near infrared spectral region up to a wavelength of 1000nm, is decreased by two orders of magnitude compared to cells lacking the layers, resulting in a doubling of the open circuit voltage. The structure: indium tin oxide/electron blocker/SnPc (100Å)∕C60 (400Å)/bathocuproine (100Å)∕Al, has a power conversion efficiency of (2.1±0.1)% at 1sun, standard AM1.5G solar illumination. This work demonstrates the importance of reducing dark current to achieve high organic thin film photovoltaic cell efficiencies.</jats:p>