People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Ning
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Matching the photocurrent of 2‐terminal mechanically‐stacked perovskite/organic tandem solar modules by varying the cell widthcitations
- 2022Comparison of the sputtered TiO2 anatase and rutile thin films as electron transporting layers in perovskite solar cellscitations
- 2022Ligand Tuning of Localized Surface Plasmon Resonances in Antimony-Doped Tin Oxide Nanocrystalscitations
- 2021Comparison of the sputtered TiO2 anatase and rutile thin films as electron transporting layers in perovskite solar cellscitations
- 2021Interface Molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factorcitations
- 2021Dislocation-toughened ceramicscitations
- 2021Understanding the Microstructure Formation of Polymer Films by Spontaneous Solution Spreading Coating with a High‐Throughput Engineering Platformcitations
- 2020Derivation and Application of a Tool to Estimate Benefits From Multiple Therapies That Reduce Recurrent Stroke Riskcitations
- 2019Favorable Mixing Thermodynamics in Ternary Polymer Blends for Realizing High Efficiency Plastic Solar Cellscitations
- 2014Towards large-scale production of solution-processed organic tandem modules based on ternary composites: Design of the intermediate layer, device optimization and laser based module processingcitations
- 2013ITO-free and fully solution-processed semitransparent organic solar cells with high fill factorscitations
- 2013Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layerscitations
- 2013An efficient solution-processed intermediate layer for facilitating fabrication of organic multi-junction solar cellscitations
- 2009Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cellscitations
- 2006Metrology in a scanning electron microscope: theoretical developments and experimental validationcitations
- 2002Enhancement of aluminum oxide physical vapor deposition with a secondary plasmacitations
Places of action
Organizations | Location | People |
---|
article
Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells
Abstract
<jats:p>We demonstrate high open circuit voltage photovoltaic cells achieved by reducing the electron leakage current through the introduction of both organic and inorganic electron blocking layers between the donor layer and the anode contact. As an example, the blocking layers reduce the dark current in tin (II) phthalocyanine (SnPc)∕C60 solar cells with response across the visible and near infrared spectral region up to a wavelength of 1000nm, is decreased by two orders of magnitude compared to cells lacking the layers, resulting in a doubling of the open circuit voltage. The structure: indium tin oxide/electron blocker/SnPc (100Å)∕C60 (400Å)/bathocuproine (100Å)∕Al, has a power conversion efficiency of (2.1±0.1)% at 1sun, standard AM1.5G solar illumination. This work demonstrates the importance of reducing dark current to achieve high organic thin film photovoltaic cell efficiencies.</jats:p>