Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shephard, Mark S.

  • Google
  • 1
  • 5
  • 96

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Permeability calculations in three-dimensional isotropic and oriented fiber networks96citations

Places of action

Chart of shared publication
Yeckel, Andrew
1 / 1 shared
Luo, Xiao Juan
1 / 1 shared
Stylianopoulos, Triantafyllos
1 / 1 shared
Barocas, Victor H.
1 / 1 shared
Sander, Edward A.
1 / 2 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Yeckel, Andrew
  • Luo, Xiao Juan
  • Stylianopoulos, Triantafyllos
  • Barocas, Victor H.
  • Sander, Edward A.
OrganizationsLocationPeople

article

Permeability calculations in three-dimensional isotropic and oriented fiber networks

  • Yeckel, Andrew
  • Shephard, Mark S.
  • Luo, Xiao Juan
  • Stylianopoulos, Triantafyllos
  • Barocas, Victor H.
  • Sander, Edward A.
Abstract

<p>Hydraulic permeabilities of fiber networks are of interest for many applications and have been studied extensively. There is little work, however, on permeability calculations in three-dimensional random networks. Computational power is now sufficient to calculate permeabilities directly by constructing artificial fiber networks and simulating flow through them. Even with today's high-performance computers, however, such an approach would be infeasible for large simulations. It is therefore necessary to develop a correlation based on fiber volume fraction, radius, and orientation, preferably by incorporating previous studies on isotropic or structured networks. In this work, the direct calculations were performed, using the finite element method, on networks with varying degrees of orientation, and combinations of results for flows parallel and perpendicular to a single fiber or an array thereof, using a volume-averaging theory, were compared to the detailed analysis. The detailed model agreed well with existing analytical solutions for square arrays of fibers up to fiber volume fractions of 46% for parallel flow and 33% for transverse flow. Permeability calculations were then performed for isotropic and oriented fiber networks within the fiber volume fraction range of 0.3%-15%. When drag coefficients for spatially periodic arrays were used, the results of the volume-averaging method agreed well with the direct finite element calculations. On the contrary, the use of drag coefficients for isolated fibers overpredicted the permeability for the volume fraction range that was employed. We concluded that a weighted combination of drag coefficients for spatially periodic arrays of fibers could be used as a good approximation for fiber networks, which further implies that the effect of the fiber volume fraction and orientation on the permeability of fiber networks are more important than the effect of local network structure.</p>

Topics
  • impedance spectroscopy
  • theory
  • simulation
  • permeability
  • random
  • isotropic