Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Buldyrev, Sergey

  • Google
  • 1
  • 3
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Asperity contacts at the nanoscale50citations

Places of action

Chart of shared publication
Srolovitz, David
1 / 65 shared
Fortini, Andrea
1 / 1 shared
Mendelev, Mikhail I.
1 / 2 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Srolovitz, David
  • Fortini, Andrea
  • Mendelev, Mikhail I.
OrganizationsLocationPeople

article

Asperity contacts at the nanoscale

  • Srolovitz, David
  • Fortini, Andrea
  • Mendelev, Mikhail I.
  • Buldyrev, Sergey
Abstract

We develop and validate an interatomic potential for ruthenium based on the embedded atom method framework with the Finnis/Sinclair representation. We confirm that the potential yields a stable hcp lattice with reasonable lattice and elastic constants and surface and stacking fault energies. We employ molecular dynamics simulations to bring two surfaces together, one flat and the other with a single asperity. We compare the process of asperity contact formation and breaking in Au and Ru, two materials currently in use in microelectromechanical system switches. While Au is very ductile at 150 and 300 K, Ru shows considerably less plasticity at 300 and 600 K (approximately the same homologous temperature). In Au, the asperity necks down to a single atom thick bridge at separation. While similar necking occurs in Ru at 600 K, it is much more limited than in Au. On the other hand, at 300 K, Ru breaks by a much more brittle process of fracture/decohesion with limited plastic deformation.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • simulation
  • molecular dynamics
  • laser emission spectroscopy
  • plasticity
  • stacking fault
  • Ruthenium