Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chung, Kyung-Min

  • Google
  • 1
  • 3
  • 171

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications171citations

Places of action

Chart of shared publication
Bensch, Wolfgang
1 / 21 shared
Woda, Michael
1 / 1 shared
Wuttig, Matthias
1 / 39 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Bensch, Wolfgang
  • Woda, Michael
  • Wuttig, Matthias
OrganizationsLocationPeople

article

Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications

  • Bensch, Wolfgang
  • Woda, Michael
  • Wuttig, Matthias
  • Chung, Kyung-Min
Abstract

<jats:p>SnSe, SnSe2, and Sn2Se3 alloys have been studied to explore their suitability as new phase change alloys for electronic memory applications. The temperature dependence of the structural and electrical properties of these alloys has been determined and compared with that of GeTe. A large electrical resistance contrast of more than five orders of magnitude is achieved for SnSe2 and Sn2Se3 alloys upon crystallization. X-ray diffraction measurements show that the transition in sheet resistance is accompanied by crystallization. The activation energy for crystallization of SnSe, SnSe2, and Sn2Se3 has been determined. The microstructure of these alloys has been investigated by atomic force microscopy measurements. X-ray reflection measurements reveal density increases of 5.0%, 17.0%, and 9.1% upon crystallization for the different alloys.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • phase
  • x-ray diffraction
  • atomic force microscopy
  • activation
  • crystallization