Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sauer, Rolf

  • Google
  • 1
  • 10
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate11citations

Places of action

Chart of shared publication
Schirra, Martin
1 / 2 shared
Stritzker, Bernd
1 / 7 shared
Reiser, Anton
1 / 1 shared
Röder, Tobias
1 / 1 shared
Thonke, Klaus
1 / 7 shared
Feneberg, Martin
1 / 5 shared
Prinz, Günther
1 / 1 shared
Röder, Uwe
1 / 1 shared
Gsell, Stefan
1 / 1 shared
Schreck, Matthias
1 / 2 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Schirra, Martin
  • Stritzker, Bernd
  • Reiser, Anton
  • Röder, Tobias
  • Thonke, Klaus
  • Feneberg, Martin
  • Prinz, Günther
  • Röder, Uwe
  • Gsell, Stefan
  • Schreck, Matthias
OrganizationsLocationPeople

article

Growth of zinc oxide nanopillars on an iridium/yttria-stabilized zirconia/silicon substrate

  • Schirra, Martin
  • Stritzker, Bernd
  • Reiser, Anton
  • Röder, Tobias
  • Thonke, Klaus
  • Feneberg, Martin
  • Prinz, Günther
  • Röder, Uwe
  • Sauer, Rolf
  • Gsell, Stefan
  • Schreck, Matthias
Abstract

<jats:p>Zinc oxide nanopillars were grown by a self-catalyzed growth process on an epitaxial Ir/yttria-stabilized zirconia/Si(111) multilayer structure in an optically heated tube furnace. The pillars obtained stand upright parallel to each other with their c-axis perpendicular to the sample surface. Problems due to alloying of Zn with Si are completely avoided, and no irregularities of the pillars in the initial growth phase are found. Cathodoluminescence measurements show narrow linewidths below 700μeV due to the excellent crystal quality. Termination of ZnO pillars with a flat metallic iridium layer is an attractive issue towards an optical cavity for laser action.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • zinc
  • Silicon
  • Iridium