People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Inoue, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2009Fano Resonance between Mie and Bragg Scattering in Photonic Crystalscitations
- 2009Thermal quenching of photoluminescence in ZnO/ZnMgO multiple quantum wells following oxygen implantation and rapid thermal annealingcitations
- 2007Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnOZnMgO multiple quantum wellscitations
- 2006Observation of blue shifts in ZnO/ZnMgO multiple quantum well structures by ion-implantation induced intermixingcitations
Places of action
Organizations | Location | People |
---|
article
Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnOZnMgO multiple quantum wells
Abstract
<p>The authors investigate the effect of oxygen implantation and rapid thermal annealing in ZnOZnMgO multiple quantum wells using photoluminescence. A blueshift in the photoluminescence is observed in the implanted samples. For a low implantation dose, a significant increase of activation energy and a slight increase of the photoluminescence efficiency are observed. This is attributed to the suppression of the point defect complexes and transformation between defect structures by implantation and subsequent rapid thermal annealing. A high dose of implantation leads to lattice damage and agglomeration of defects leading to large defect clusters, which result to an increase in nonradiative recombination.</p>