Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kanicki, Jerzy

  • Google
  • 3
  • 13
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Reflective Electrochromic Device with Gelatin-Nanocomposite Electrolytecitations
  • 2013High efficiency Cu (In, Ga) Se2 flexible solar cells fabricated by roll-to-roll metallic precursor co-sputtering method16citations
  • 2007Polycrystalline tetrabenzoporphyrin organic field-effect transistors with nanostructured channels40citations

Places of action

Chart of shared publication
Sentanin, Franciani C.
1 / 2 shared
Silva, M. M.
1 / 50 shared
Pawlicka, Agnieszka
1 / 14 shared
Sabadini, Rodrigo César
1 / 1 shared
Cavalheiro, Carla C.
1 / 1 shared
Hollars, Dennis R.
1 / 1 shared
Zhang, Rui
1 / 14 shared
Ono, Noboru
1 / 1 shared
Petroff, Pierre
1 / 2 shared
Pattison, Lisa R.
1 / 1 shared
Yamada, Hiroko
1 / 1 shared
Shea, Patrick B.
1 / 1 shared
Chen, Charlene
1 / 1 shared
Chart of publication period
2017
2013
2007

Co-Authors (by relevance)

  • Sentanin, Franciani C.
  • Silva, M. M.
  • Pawlicka, Agnieszka
  • Sabadini, Rodrigo César
  • Cavalheiro, Carla C.
  • Hollars, Dennis R.
  • Zhang, Rui
  • Ono, Noboru
  • Petroff, Pierre
  • Pattison, Lisa R.
  • Yamada, Hiroko
  • Shea, Patrick B.
  • Chen, Charlene
OrganizationsLocationPeople

article

Polycrystalline tetrabenzoporphyrin organic field-effect transistors with nanostructured channels

  • Ono, Noboru
  • Petroff, Pierre
  • Kanicki, Jerzy
  • Pattison, Lisa R.
  • Yamada, Hiroko
  • Shea, Patrick B.
  • Chen, Charlene
Abstract

<jats:p>Solution-processed organic thin-film field-effect transistors (OFETs) were fabricated using a precursor form of the organic semiconductor tetrabenzoporphyrin (TBP) deposited on a thermal silicon oxide gate insulator patterned with nanometer-scale trenches. Thermal conversion of the precursor film to TBP was enhanced by ordered TBP aggregation in the prepatterned trenches, demonstrating precise control and placement of long- and short-range ordering of the organic semiconductor. OFETs with channels parallel to trench direction growth were found to have field-effect mobility approaching one order of magnitude greater than transistors fabricated with the channel oriented perpendicular to dendrimer growth.</jats:p>

Topics
  • mobility
  • semiconductor
  • Silicon
  • dendrimer