People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Valente, Raf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2015Study of formability of sandwich shells with metal foam cores based on punch penetration test
- 2014Study on the forming of sandwich shells with closed-cell foam corescitations
- 2013STUDY OF FORMABILITY OF SANDWICH SHELLS WITH METAL FOAM COREScitations
- 2012Numerical Modelling and Experimental Study of Sandwich Shells with Metal Foam Corescitations
- 2012Numerical and experimental study of the bulge test of sandwich shells with metal foam cores
- 2011Modeling of Sandwich Sheets with Metallic Foamcitations
- 2011Optimisation of tubular hydroforming processes for wrinkling and thinning control
- 2011FEM analysis of Sandwich Shells with Metallic Foam Corescitations
- 2011Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Testcitations
- 2011On a New Optimization Approach for the Hydroforming of Defects-Free Tubular Metallic Parts
- 2010STUDY OF SANDWICH SHELLS WITH METALLIC FOAM COREScitations
- 2008Simulation of dissimilar tailor-welded tubular hydroforming processes using EAS-based solid finite elementscitations
- 2007An overview of sheet metal forming simulations with enhanced assumed strain elements
Places of action
Organizations | Location | People |
---|
document
An overview of sheet metal forming simulations with enhanced assumed strain elements
Abstract
Sheet metal forming operations are characterized by extreme shape changes in initially flat or pre-formed blanks, thus needing complex and robust simulation tools for their correct virtual analysis. Among numerical approaches, finite element procedures are one of the most common techniques in modelling and simulation of such manufacturing applications. However, reliable simulations of complex parts' sheet forming must be able to correctly reproduce the deformation patterns involved but also accurately predict the appearance of defects after or during forming stages. Among the most common defects in the forming of metallic parts, spring-back and wrinkling are of crucial importance in manufacturing viewpoint. Spring-back appearance can be traced to the onset of traction instabilities when the tools depart the blank due to a rearrangement of stress fields after forming (or forming stages) and so, the unloaded blank reaches a new equilibrium. On the other side, wrinkling defects can be seen as compressive dominated defects and, in this sense, be dealt with as buckling-type structural instabilities. In this work, a class of solid-shell finite elements [1,2,3,4], based on distinct features but relying on the enhanced assumed strain approach, are tested in the simulation of sheet metal forming operation in metallic components. Results obtained from these elements, specially designed to treat transverse shear and volumetric. locking effects, are then compared with well-established references in the literature, including experimental and numerical studies, where, for the latter case, shell finite elements are dominantly used (as can be seen, for instance, in reference [5]).