Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Horn, C. H. L. J. Ten

  • Google
  • 2
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013A Plasticity Induced Anisotropic Damage Model for Sheet Forming Processes1citations
  • 2007Influence of the plastic material behaviour on the prediction of forming limits3citations

Places of action

Chart of shared publication
Klaseboer, G.
1 / 1 shared
Niazi, M. S.
1 / 3 shared
Van Den Boogaard, Ton
2 / 135 shared
Wisselink, H. H.
1 / 4 shared
Meinders, V. T.
1 / 2 shared
Vegter, H.
1 / 8 shared
Chart of publication period
2013
2007

Co-Authors (by relevance)

  • Klaseboer, G.
  • Niazi, M. S.
  • Van Den Boogaard, Ton
  • Wisselink, H. H.
  • Meinders, V. T.
  • Vegter, H.
OrganizationsLocationPeople

document

Influence of the plastic material behaviour on the prediction of forming limits

  • Horn, C. H. L. J. Ten
  • Van Den Boogaard, Ton
  • Vegter, H.
Abstract

Prediction of the onset of necking is of large importance in reliability of forming simulation in present automotive industry. Advanced material models require accurate descriptions of the plastic material behaviour including the effect of strain rate [1, 3]. The usual approach for identifying the forming limits in industry is the comparison of a calculated strain map (major against minor strain) with a measured forming limit curve. This approach does not take into account the influence of strain path changes. Prediction of forming limit curves [4] with classical material models can already demonstrate that the forming limits are influenced by this strain path change effect. Including the effect of strain rate on the plastic material behaviour has a strong influence in prediction of onset of instability [2]. Neglecting this effect leads to underestimation of forming capacity of the material in stretch forming parts in particular. The shape of the yield locus [1, 2] will influence the predicted forming limit curves in the region from plane strain to bi-axial. Damage controlled failure will become more important using (advanced) high strength steels. This will affect the stress strain curve at high deformation grades. The work hardening is not only controlled by dislocation interaction, but also by void growth and possible presence of micro-cracks at the interface between the hard en soft phases.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • simulation
  • crack
  • strength
  • steel
  • dislocation
  • forming
  • void