People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sun, Yiru
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Photophysics of Pt-porphyrin electrophosphorescent devices emitting in the near infrared
Abstract
<jats:p>The triplet annihilation dynamics of near infrared organic light-emitting devices are studied with peak electrophosphorescence at a wavelength of 772nm using a platinum-porphyrin derivative Pt(II)-tetraphenyltetrabenzoporphyrin as dopant. Both the photoluminescent decay transients of the thin films and the quantum efficiency versus current density characteristics of devices using tris(8-hydroxyquinoline) aluminum or 4,4′-bis(N-carbazolyl)biphenyl (CBP) as hosts are fitted by a model based on triplet-triplet annihilation. When the phosphor is codoped with Ir(III) bis(2-phenyl quinolyl-N,C2′) acetylacetonate in CBP, the quantum efficiency is enhanced, and the observed decrease of efficiency at high current densities is explained by field-induced charge pair dissociation. The external quantum efficiency has a maximum of (8.5±0.3)%, decreasing to (5.0±0.3)% at 1mA∕cm2.</jats:p>