People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Revuelta, Alejandro
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature watercitations
- 2024Process monitoring by deep neural networks in directed energy deposition : CNN-based detection, segmentation, and statistical analysis of melt poolscitations
- 2024Effect of laser focal point position on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2024Process monitoring by deep neural networks in directed energy depositioncitations
- 2024Process monitoring by deep neural networks in directed energy deposition:CNN-based detection, segmentation, and statistical analysis of melt poolscitations
- 2023SCC behaviour of laser powder bed fused 316L stainless steel in high-temperature water at 288 °Ccitations
- 2022AM NPP - High temperature solution annealing of AM 316L
- 2021Additive manufacturing in nuclear power plants (AM-NPP)
- 2021Method for embedding components during additive manufacturing of metal parts
- 2020On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturingcitations
- 2018Design and Verification of a Wireless Readout System for Integrated Motor Axle Condition Monitoringcitations
- 2017Soft magnetic alloys for selective laser melting
- 2017Feasibility of selective laser melting process in manufacturing of digital spare parts
- 2016Manufacturing of topology optimized soft magnetic core through 3D printing
- 2016Optimization and simulation of SLM process for high density H13 tool steel partscitations
- 2007High velocity forming of magnesium and titanium sheetscitations
- 2007Comparison of two commercial FE-codes for sheet metal forming
Places of action
Organizations | Location | People |
---|
article
High velocity forming of magnesium and titanium sheets
Abstract
Cold forming of magnesium and titanium is difficult due to theirhexagonal crystal structure and limited number of available slip systems.However, high velocity deformation can be quite effective in increasing theforming limits. In this study, electromagnetic forming (EMF) of thin AZ31B-Omagnesium and CP grade 1 titanium sheets were compared with normal deepdrawing. Same dies were used in both forming processes. Finite element (FE)simulations were carried out to improve the EMF process parameters.Constitutive data was determined using Split Hopkinson Pressure Bar tests(SHPB). To study formability, sample sheets were electromagnetically launchedto the female die, using a flat spiral electromagnetic coil and aluminumdriver sheets. Deep drawing tests were made by a laboratory press-machine.Results show that high velocity forming processes increase the formability ofMagnesium and Titanium sheets although process parameters have to be carefullytuned to obtain good results.