People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rességuier, T. De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Material ejection from surface defects in laser shock-loaded metallic foilscitations
- 2020Dynamic behaviour and spall fracture of laser shock-loaded AlSi10Mg alloy obtained by selective laser meltingcitations
- 2019Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loadingcitations
- 2018On the shock-based determination of the adhesive strength at a substrate-coating interfacecitations
- 2018Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron lightcitations
- 2012Influence of elevated temperature on the wave propagation and spallation in laser shock-loaded ironcitations
- 2007Use of a macroscopic model for describing the effects of porosity on shock wave propagationcitations
Places of action
Organizations | Location | People |
---|
article
Use of a macroscopic model for describing the effects of porosity on shock wave propagation
Abstract
Materials are manufactured by sintering involve porosity. Some material processes, like laser peening, consist in applying shocks onto the surface of a porous material surface to induce permanent densification that will increase its resistance to corrosion and wear. An estimation of the residual compaction and stresses within the material after treatment requires a good knowledge of shock wave propagation in such media. To investigate the effects of porosity on this propagation, we have performed velocity interferometer system for any reflectors measurements on laser shock-loaded samples of sintered steels with 10%−28% porosity. The records do not agree with the predictions of a simple P−alpha model from the literature. Hence, a formulation of the compaction process is proposed to improve the correlation between experimental and simulated velocity profile.