Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Masin, M.

  • Google
  • 2
  • 4
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Interplay between steps and non-equilibrium effects in surface diffusion for a lattice-gas model of O/W(110)14citations
  • 2007Interplay between steps and nonequilibrium effects in surface diffusion for a lattice-gas model of O/W(110)14citations

Places of action

Chart of shared publication
Vattulainen, I.
2 / 3 shared
Chvoj, Z.
2 / 2 shared
Ala-Nissila, Tapio
1 / 27 shared
Ala-Nissilä, T.
1 / 1 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Vattulainen, I.
  • Chvoj, Z.
  • Ala-Nissila, Tapio
  • Ala-Nissilä, T.
OrganizationsLocationPeople

article

Interplay between steps and non-equilibrium effects in surface diffusion for a lattice-gas model of O/W(110)

  • Vattulainen, I.
  • Chvoj, Z.
  • Ala-Nissila, Tapio
  • Masin, M.
Abstract

The authors consider the influence of steps and nonequilibrium conditions on surface diffusion in a strongly interacting surface adsorbate system. This problem is addressed through Monte Carlo simulations of a lattice-gas model of O∕W(110), where steps are described by an additional binding energy EB at the lower step edge positions. Both equilibrium fluctuation and Boltzmann-Matano spreading studies indicate that the role of steps for diffusion across the steps is prominent in the ordered phases at intermediate coverages. The strongest effects are found in the p(2×1) phase, whose periodicity Lp is 2. The collective diffusion then depends on two competing factors: domain growth within the ordered phase, which on a flat surface has two degenerate orientations [p(2×1) and p(1×2)], and the step-induced ordering due to the enhanced binding at the lower step edge position. The latter case favors the p(2×1) phase, in which all adsorption sites right below the step edge are occupied. When these two factors compete, two possible scenarios emerge. First, when the terrace width L does not match the periodicity of the ordered adatom layer (L/Lp is noninteger), the mismatch gives rise to frustration, which eliminates the effect of steps provided that EB is not exceptionally large. Under these circumstances, the collective diffusion coefficient behaves largely as on a flat surface. Second, however, if the terrace width does match the periodicity of the ordered adatom layer (L/Lp is an integer), collective diffusion is strongly affected by steps. In this case, the influence of steps is manifested as the disappearance of the major peak associated with the ordered p(2×1) and p(1×2) structures on a flat surface. This effect is particularly strong for narrow terraces, yet it persists up to about L≈25Lp for small EB and up to about L≈500Lp for EB, which is of the same magnitude as the bare potential of the surface. On real surfaces, similar competition is expected, although the effects are likely to be smaller due to fluctuations in terrace widths. Finally, Boltzmann-Matano spreading simulations indicate that even slight deviations from equilibrium conditions may give rise to transient peaks in the collective diffusion coefficient. These transient structures are due to the interplay between steps and nonequilibrium conditions and emerge at coverages, which do not correspond to the ideal ordered phases.

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • ordered phase