Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Azevedo, G. De M.

  • Google
  • 2
  • 9
  • 53

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Vibrational properties of Ge nanocrystals determined by EXAFS1citations
  • 2005Ion-irradiation-induced preferential amorphization of Ge nanocrystals in silica52citations

Places of action

Chart of shared publication
Ridgway, M. C.
2 / 38 shared
Araujo, L. L.
1 / 11 shared
Wesch, W.
1 / 7 shared
Nylandsted-Larsen, A.
1 / 3 shared
Glover, C. J.
1 / 12 shared
Foran, G. J.
1 / 17 shared
Hansen, J.
1 / 2 shared
Miller, R.
1 / 6 shared
Llewellyn, D. J.
1 / 11 shared
Chart of publication period
2007
2005

Co-Authors (by relevance)

  • Ridgway, M. C.
  • Araujo, L. L.
  • Wesch, W.
  • Nylandsted-Larsen, A.
  • Glover, C. J.
  • Foran, G. J.
  • Hansen, J.
  • Miller, R.
  • Llewellyn, D. J.
OrganizationsLocationPeople

document

Vibrational properties of Ge nanocrystals determined by EXAFS

  • Ridgway, M. C.
  • Araujo, L. L.
  • Azevedo, G. De M.
Abstract

<p>The vibrational properties of Ge nanocrystals (NCs) produced by ion implantation in SiO<sub>2</sub> followed by thermal annealing were determined from temperature dependent Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy measurements. Using a correlated anharmonic Einstein model and thermodynamic perturbation theory it was possible to extract information about thermal and static disorder, thermal expansion and anharmonicity effects for the Ge NCs. Comparison with results for bulk crystalline and amorphous Ge indicates that the Ge NCs bonds are stiffer than those of both bulk phases of Ge. Also, the values of the anharmonic linear thermal expansion and the thermal expansion coefficient obtained for the Ge NCs were considerably smaller those for bulk crystalline Ge. Similar trends are reported in the literature for other semiconductor NC systems. They suggest that the increased surface to volume ratio of nanocrystals and the presence of the surrounding SiO<sub>2</sub> matrix might be responsible for the different vibrational properties of the nanocrystal phase.</p>

Topics
  • surface
  • amorphous
  • phase
  • theory
  • semiconductor
  • thermal expansion
  • annealing
  • extended X-ray absorption fine structure spectroscopy