Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lábár, J. L.

  • Google
  • 8
  • 36
  • 109

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2020Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film49citations
  • 2017CMOS-Compatible Contacts to n-InP13citations
  • 2017Phase formation sequence in the Ti/InP system during thin film solid-state reactions9citations
  • 2015Solute redistribution during annealing of a cold rolled Cu-Ag alloy18citations
  • 2014Microstructure evolution during annealing of an SPD- processed supersaturated Cu-3 at.% Ag alloy5citations
  • 2014Microstructure evolution during annealing of an SPD- processed supersaturated Cu – 3 at.% Ag alloycitations
  • 2007Time resolved x-ray reflectivity study of interfacial reactions in Cu Mg thin films during heat treatment10citations
  • 2006Influence of layer microstructure on the double nucleation process in Cu/Mg multilayers5citations

Places of action

Chart of shared publication
Michler, J.
1 / 94 shared
Rohbeck, N.
1 / 2 shared
Gubicza, J.
4 / 11 shared
Nagy, P.
1 / 1 shared
Sortais, P.
1 / 1 shared
Pethö, L.
1 / 6 shared
Roussely, G.
1 / 1 shared
Sagnes, Isabelle
2 / 704 shared
Card, T.
1 / 1 shared
Rodriguez, P.
1 / 5 shared
Nemouchi, F.
2 / 13 shared
Pasquali, M.
1 / 6 shared
Delaye, V.
1 / 2 shared
Jany, C.
1 / 2 shared
Da Fonseca, J.
1 / 1 shared
Ghegin, E.
2 / 6 shared
Favier, S.
1 / 3 shared
Menyhárd, M.
2 / 2 shared
Rodriguez, Ph.
1 / 6 shared
Kauffmann, A.
3 / 67 shared
Subramanya Sarma, V.
1 / 19 shared
Hegedus, Z.
1 / 2 shared
Freudenberger, Jens
2 / 150 shared
Sarma, V. S.
2 / 7 shared
Hegedús, Z.
1 / 1 shared
Freudenberger, J.
1 / 21 shared
Hegedűs, Z.
1 / 2 shared
Bigault, T.
1 / 1 shared
Rodriguez-Viejo, Javier
2 / 8 shared
Clavaguera-Mora, M. T.
1 / 6 shared
Silveira, Marta Gonzalez
2 / 9 shared
Kótis, L.
1 / 1 shared
Pi, Francesc
1 / 1 shared
Garcia, Gemma
1 / 3 shared
Barna, A.
1 / 1 shared
Ager, F. J.
1 / 3 shared
Chart of publication period
2020
2017
2015
2014
2007
2006

Co-Authors (by relevance)

  • Michler, J.
  • Rohbeck, N.
  • Gubicza, J.
  • Nagy, P.
  • Sortais, P.
  • Pethö, L.
  • Roussely, G.
  • Sagnes, Isabelle
  • Card, T.
  • Rodriguez, P.
  • Nemouchi, F.
  • Pasquali, M.
  • Delaye, V.
  • Jany, C.
  • Da Fonseca, J.
  • Ghegin, E.
  • Favier, S.
  • Menyhárd, M.
  • Rodriguez, Ph.
  • Kauffmann, A.
  • Subramanya Sarma, V.
  • Hegedus, Z.
  • Freudenberger, Jens
  • Sarma, V. S.
  • Hegedús, Z.
  • Freudenberger, J.
  • Hegedűs, Z.
  • Bigault, T.
  • Rodriguez-Viejo, Javier
  • Clavaguera-Mora, M. T.
  • Silveira, Marta Gonzalez
  • Kótis, L.
  • Pi, Francesc
  • Garcia, Gemma
  • Barna, A.
  • Ager, F. J.
OrganizationsLocationPeople

article

Influence of layer microstructure on the double nucleation process in Cu/Mg multilayers

  • Lábár, J. L.
  • Rodriguez-Viejo, Javier
  • Kótis, L.
  • Pi, Francesc
  • Garcia, Gemma
  • Menyhárd, M.
  • Silveira, Marta Gonzalez
  • Barna, A.
  • Ager, F. J.
Abstract

We have investigated by differential scanning calorimetry the thermal evolution of CuMg multilayers with different modulation lengths, ranging from 728 to 30120 nm. The Cu and Mg layers were grown by sequential evaporation in an electron beam deposition system. The phase identification and layer microstructure were determined by cross-section transmission electron microscopy, Rutherford backscattering, and scanning electron microscopy with focused ion beam for sample preparation. Upon heating, the intermetallic Cu Mg2 forms at the interfaces until coalescence is reached and thickens through a diffusion-limited process. Cross-section transmission electron microscopy observations show a distinct microstructure at the top and bottom of the as-prepared Mg layers, while no significant differences were seen in the Cu layers. We show that this effect is responsible for the observed asymmetry in the nucleation process between the Cu on Mg and the Mg on Cu interfaces. By modeling the calorimetric data we determine the role of both interfaces in the nucleation and lateral growth stages. We also show that vertical growth proceeds by grain development of the product phase, increasing significantly the roughness of the interfaces. © 2006 American Institute of Physics.

Topics
  • impedance spectroscopy
  • grain
  • phase
  • scanning electron microscopy
  • focused ion beam
  • transmission electron microscopy
  • differential scanning calorimetry
  • intermetallic
  • evaporation
  • electron beam deposition