Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Berghoff, B.

  • Google
  • 2
  • 12
  • 84

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Electronic band gap of Si/SiO2 quantum wells: Comparison of ab initio calculations and photoluminescence measurements20citations
  • 2006Residual stress in Si nanocrystals embedded in a SiO2 matrix64citations

Places of action

Chart of shared publication
Rölver, R.
2 / 4 shared
Dymiati, A.
1 / 1 shared
Först, M.
2 / 6 shared
Kurz, H.
1 / 9 shared
Wagner, J.-M.
1 / 1 shared
Spangenberg, B.
2 / 4 shared
Seino, K.
1 / 1 shared
Bechstedt, F.
1 / 18 shared
Mayer, J.
1 / 12 shared
Arguirov, T.
1 / 1 shared
Mchedlidze, T.
1 / 2 shared
Kittler, M.
1 / 1 shared
Chart of publication period
2007
2006

Co-Authors (by relevance)

  • Rölver, R.
  • Dymiati, A.
  • Först, M.
  • Kurz, H.
  • Wagner, J.-M.
  • Spangenberg, B.
  • Seino, K.
  • Bechstedt, F.
  • Mayer, J.
  • Arguirov, T.
  • Mchedlidze, T.
  • Kittler, M.
OrganizationsLocationPeople

article

Residual stress in Si nanocrystals embedded in a SiO2 matrix

  • Rölver, R.
  • Först, M.
  • Spangenberg, B.
  • Arguirov, T.
  • Mchedlidze, T.
  • Berghoff, B.
  • Kittler, M.
Abstract

<jats:p>Multiple quantum wells consisting of alternating Si and SiO2 layers were studied by means of Raman scattering. The structures were fabricated by the remote plasma enhanced chemical vapor deposition of amorphous Si and SiO2 layers on quartz substrate. The structures were subjected to a rapid thermal annealing procedure for Si crystallization. The obtained results suggest that the Si layers consist of nanocrystals embedded in an amorphous Si phase. It was found that the silicon nanocrystals inside 2nm thin layers are under high residual compressive stress. Moreover, the metastable Si III phase was detected in these samples supporting the presence of large compressive stresses in the structures. The compressive stress could be relaxed upon local laser annealing.</jats:p>

Topics
  • amorphous
  • phase
  • Silicon
  • annealing
  • crystallization
  • chemical vapor deposition