People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sopanen, Markku
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Metalorganic vapor phase epitaxy of wurtzite InP nanowires on GaNcitations
- 2017Grass-like Alumina with Low Refractive Index for Scalable, Broadband, Omnidirectional Antireflection Coatings on Glass Using Atomic Layer Depositioncitations
- 2010GaAs nanowire and crystallite growth on amorphous substrate from metalorganic precursorscitations
- 2009Maskless roughening of sapphire substrates for enhanced light extraction of nitride based blue LEDscitations
- 2008Enhanced electroluminescence in 405 nm InGaN/GaN LEDs by optimized electron blocking layercitations
- 2007Reduction of threading dislocation density in Al0.12Ga0.88N epilayers by a multistep techniquecitations
- 2007Control of the morphology of InGaN/GaN quantum wells grown by metalorganic chemical vapor depositioncitations
- 2007Reduction of threading dislocation density in A1 0.12 Ga 0.88 N epilayers by a multistep techniquecitations
- 2006Comparison of epitaxial thin layer GaN and InP passivations on InGaAs near-surface quantum wellscitations
- 2006Morphology optimization of MOCVD-grown GaN nucleation layers by the multistep techniquecitations
Places of action
Organizations | Location | People |
---|
article
Comparison of epitaxial thin layer GaN and InP passivations on InGaAs near-surface quantum wells
Abstract
The optical properties of the in situ epitaxial GaN and InP passivated InGaAs∕GaAs near-surface quantum wells, which were fabricated by metal organic vapor phase epitaxy, are investigated. Low-temperature photoluminescence (PL), time-resolved photoluminescence, and photoreflectance are used to study the passivation effect. Both GaN and InP passivations are observed to significantly enhance the PL intensity and carrier lifetime and to reduce the surface electrical fields. Comparison of the methods shows that the epitaxial InP passivation is more effective. However, epitaxial GaN and nitridation methods are comparable with InP passivation.