Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruythooren, W.

  • Google
  • 2
  • 11
  • 294

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2005The role of Al on Ohmic contact formation on n-type GaN and AlGaN∕GaN101citations
  • 2005Improvement of AlGaN∕GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer193citations

Places of action

Chart of shared publication
Derluyn, Joff
2 / 9 shared
Tendeloo, G. Van
1 / 16 shared
Germain, M.
2 / 6 shared
Leys, M. R.
2 / 5 shared
Daele, B. Van
1 / 2 shared
Das, J.
1 / 72 shared
Cheng, K.
1 / 4 shared
Boeykens, S.
1 / 2 shared
Vandersmissen, R.
1 / 1 shared
Degroote, S.
1 / 5 shared
Borghs, G.
1 / 4 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Derluyn, Joff
  • Tendeloo, G. Van
  • Germain, M.
  • Leys, M. R.
  • Daele, B. Van
  • Das, J.
  • Cheng, K.
  • Boeykens, S.
  • Vandersmissen, R.
  • Degroote, S.
  • Borghs, G.
OrganizationsLocationPeople

article

The role of Al on Ohmic contact formation on n-type GaN and AlGaN∕GaN

  • Derluyn, Joff
  • Tendeloo, G. Van
  • Ruythooren, W.
  • Germain, M.
  • Leys, M. R.
  • Daele, B. Van
Abstract

<jats:p>A standard metallization scheme for the formation of Ohmic contacts on n-type GaN does exist. It has the following multilayer structure: Ti∕Al∕metal∕Au. Ti is known to extract N out of the GaN. This leaves a high density of N vacancies (donors) near the interface pinning the Fermi level. The created tunnel junction is responsible for an Ohmic contact behavior. Au is deposited as the final metal layer to exclude oxidation of the contact and the metal should limit the diffusion of Au into the layers below and vice versa. Al in the metallization scheme is known to improve the contact resistance, but the reason why has not been reported yet. We studied Ti and Ti∕Al contacts on GaN and AlGaN∕GaN as a function of annealing temperature by transmission electron microscopy. The role of Al in the metal multilayer, and of Al in the AlGaN on the Ohmic contact formation, has been determined. The latter result indicates that the standard metallization scheme for GaN cannot be simply transferred to AlGaN∕GaN structures.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • transmission electron microscopy
  • annealing