People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Clark, A. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Cooling of bulk material by electron-tunneling refrigerators
Abstract
Improved refrigeration techniques have lead to scientific discoveries such as superconductivity and Bose-Einstein condensation. Improved refrigeration techniques also enhance our quality of life. Semiconductor processing equipment and magnetic-resonance imaging machines incorporate mechanical coolers operating below 10 K. There is a pressing need for refrigeration techniques to reach even lower temperatures because many next-generation analytical and astronomical instruments will rely on sensors cooled to temperatures near 100 mK. Here we demonstrate a solid-state, on-chip refrigerator capable of reaching 100 mK based on the quantum-mechanical tunneling of electrons through normal metal-insulator-superconductor junctions. The cooling power and temperature reduction of our refrigerator are sufficient for practical applications and we have used it to cool bulk material that has no electrical connection to the refrigerating elements....