Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bunker, Bruce

  • Google
  • 1
  • 11
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Bimetallic Pt–Ag and Pd–Ag nanoparticles58citations

Places of action

Chart of shared publication
Meisel, Dan
1 / 1 shared
Doudna, C. M.
1 / 1 shared
Shibata, Tomohiro
1 / 2 shared
Bertino, M. F.
1 / 1 shared
Tokuhiro, A. T.
1 / 1 shared
Chattopadhyay, Soma
1 / 3 shared
Mishra, Bhoopesh
1 / 1 shared
Lahiri, Debdutta
1 / 1 shared
Terry, Jeff
1 / 1 shared
Zhang, Zhenyuan
1 / 1 shared
Blum, Frank D.
1 / 3 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Meisel, Dan
  • Doudna, C. M.
  • Shibata, Tomohiro
  • Bertino, M. F.
  • Tokuhiro, A. T.
  • Chattopadhyay, Soma
  • Mishra, Bhoopesh
  • Lahiri, Debdutta
  • Terry, Jeff
  • Zhang, Zhenyuan
  • Blum, Frank D.
OrganizationsLocationPeople

article

Bimetallic Pt–Ag and Pd–Ag nanoparticles

  • Meisel, Dan
  • Doudna, C. M.
  • Shibata, Tomohiro
  • Bertino, M. F.
  • Tokuhiro, A. T.
  • Chattopadhyay, Soma
  • Mishra, Bhoopesh
  • Lahiri, Debdutta
  • Terry, Jeff
  • Bunker, Bruce
  • Zhang, Zhenyuan
  • Blum, Frank D.
Abstract

<jats:p>We report studies of bimetallic nanoparticles with 15%–16% atomic crystal parameters size mismatch. The degree of alloying was probed in a 2-nm Pt core (smallest attainable core size) of Pt–Ag nanoparticles (completely immiscible in bulk) and 20-nm-diameter Pd–Ag nanowires (completely miscible in bulk). Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical (nanowire) morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd–Ag nanowires alloy similar to previously reported spherical Pd–Ag particles of similar diameter and composition.</jats:p>

Topics
  • nanoparticle
  • surface
  • wire