People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liebau, Maik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
document
Catalytic CVD of SWCNTs at Low Temperatures and SWCNT Devices
Abstract
New results on the planar growth of single‐walled carbon nanotubes (SWCNTs) by catalytic chemical vapor deposition (CVD) at low temperatures will be reported. Optimizing catalyst, catalyst support, and growth parameters yields SWCNTs at temperatures as low as 600 °C. Growth at such low temperatures largely affects the diameter distribution since coalescence of the catalyst is suppressed. A phenomenological growth model will be suggested for CVD growth at low temperatures. The model takes into account surface diffusion and is an alternative to the bulk diffusion based vapor‐liquid‐solid (VLS) model. Furthermore, carbon nanotubes field effect transistors based on substrate grown SWCNTs will be presented. In these devices good contact resistances could be achieved by electroless metal deposition or metal evaporation of the contacts.