People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huetink, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2012Free Surface Modeling of Contacting Solid Metal Flows Employing the ALE formulationcitations
- 2011Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir weldingcitations
- 2011Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding
- 2007Numerical forming simulations and optimisation in advanced materials
- 2007Large deformation simulation of anisotropic material using an updated Lagrangian finite element methodcitations
- 2004Modelling of aluminium sheet forming at elevated temperaturescitations
- 2004FE calculations on a three stage metal forming process of Sandvik Nanoflex
- 2004FE calculations on a three stage metal forming process of Sandvik Nanoflexcitations
Places of action
Organizations | Location | People |
---|
document
Modelling of aluminium sheet forming at elevated temperatures
Abstract
The formability of Al‐Mg sheet can be improved considerably, by increasing the temperature. By heating the sheet in areas with large shear strains, but cooling it on places where the risk of necking is high, the limiting drawing ratio can be increased to values above 2.5. At elevated temperatures, the mechanical response of the material becomes strain rate dependent. To accurately simulate warm forming of aluminium sheet, a material model is required that incorporates the temperature and strain‐rate dependency. In this paper simulations are presented of the deep drawing of a cylindrical cup, using shell elements. It is demonstrated that the familiar quadratic Hill yield function is not capable of describing the plastic deformation of aluminium. Hardening can be described successfully with a physically based material model for temperatures up to 200 °C. At higher temperatures and very low strain rates, the flow curve deviates significantly from the model.