Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Netzer, F.

  • Google
  • 1
  • 5
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Identification of new adsorption sites of H and D on rhodium(100)22citations

Places of action

Chart of shared publication
Ramsey, M. G.
1 / 6 shared
Eichler, A.
1 / 3 shared
Winkler, A.
1 / 49 shared
Sock, M.
1 / 7 shared
Pauer, G.
1 / 1 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Ramsey, M. G.
  • Eichler, A.
  • Winkler, A.
  • Sock, M.
  • Pauer, G.
OrganizationsLocationPeople

article

Identification of new adsorption sites of H and D on rhodium(100)

  • Netzer, F.
  • Ramsey, M. G.
  • Eichler, A.
  • Winkler, A.
  • Sock, M.
  • Pauer, G.
Abstract

Exposure of Rh(100) to hydrogen (deuterium) in atomic form leads to the population of adsorption sites, not attainable with molecular species. Quantitative thermal desorption spectroscopy (TDS), high resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT) calculations have been applied to investigate these new adsorption sites. In addition to the fourfold hollow sites (1 ML), which can be populated by dissociative adsorption, occupation of subsurface sites and the population of additional surface sites (for deuterium) have been observed (maximum coverage 3.4 ML). In TDS individual adsorption states show up in the form of three different peaks: Recombination of H (D) atoms from hollow sites around 300 K, desorption of subsurface species between 150-200 K, and recombinative desorption via a molecular precursor at about 120 K (for deuterium only). The exposure of the Rh(100) surface to atomic H (D) leads to a pronounced roughening of the surface, as evidenced in the HREELS spectra. Zero point corrected adsorption energies, activation barriers for adsorption, desorption, and diffusion into the subsurface sites, as well as vibrational energies have been calculated by DFT for a variety of adsorbate configurations of H and D and compared with the experimental data....

Topics
  • density
  • surface
  • theory
  • Rhodium
  • Hydrogen
  • density functional theory
  • activation
  • electron energy loss spectroscopy