People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koinuma, H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2005Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser depositioncitations
- 2004High-resolution synchrotron-radiation photoemission characterization for atomically-controlled SrTiO3(001) substrate surfaces subjected to various surface treatmentscitations
- 2004Epitaxial growth and physical properties of a room temperature ferromagnetic semiconductor: Anatase phase Ti1−xCoxO2citations
- 2003A high-resolution synchrotron-radiation angle-resolved photoemission spectrometer with <i>in situ</i> oxide thin film growth capabilitycitations
- 2003Modeling and simulation of polycrystalline ZnO thin-film transistorscitations
- 2003Layer-by-layer growth of high-optical-quality ZnO film on atomically smooth and lattice relaxed ZnO buffer layercitations
- 200345° rotational epitaxy of SrTiO3 thin films on sulfide-buffered Sicitations
- 2003Experimental investigation of ferromagnetism in II-VI disordered semiconducting compoundscitations
- 2003Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser depositioncitations
- 2002Effect of MgZnO-layer capping on optical properties of ZnO epitaxial layerscitations
- 2002Vapor–liquid–solid tri-phase pulsed-laser epitaxy of RBa2Cu3O7−y single-crystal filmscitations
- 2002In-plane lattice constant tuning of an oxide substrate with Ba1−xSrxTiO3 and BaTiO3 buffer layerscitations
- 2002Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and Ncitations
- 2001Ferromagnetic interactions in p- and n-type II-VI diluted magnetic semiconductors
- 2001High-temperature goniometer for thin film growth and ion scattering studiescitations
- 2001Anatase TiO2 thin films grown on lattice-matched LaAlO3 substrate by laser molecular-beam epitaxycitations
- 2000In-plane anisotropic strain of ZnO closely packed microcrystallites grown on tilted (0001) sapphire
Places of action
Organizations | Location | People |
---|
article
A high-resolution synchrotron-radiation angle-resolved photoemission spectrometer with <i>in situ</i> oxide thin film growth capability
Abstract
<jats:p>We have constructed a high-resolution synchrotron-radiation angle-resolved photoemission (ARPES) spectrometer combined with a combinatorial laser molecular-beam epitaxy (laser MBE) thin film growth system in order to investigate the electronic structure of transition metal oxide thin films. An ARPES spectrometer GAMMADATA SCIENTA SES-100 was selected for the high-throughput and high-energy and angular-resolution ARPES measurements. A total energy resolution of 6.3 meV and a momentum (an angular) resolution of 0.02 Å−1 (0.2°) were obtained at a photon energy of 40 eV. The system is installed at the high-resolution vacuum-ultraviolet beamline BL-1C or the soft-x-ray undulator beamline BL-2C at the Photon Factory as an end-station. Another distinctive feature of this system is the direct connection from the spectrometer to a laser MBE chamber. Thin film samples can be transferred quickly into the photoemission chamber without breaking ultrahigh vacuum. Laser MBE is one of the best methods to grow thin films of many different transition metal oxides and to achieve well-ordered surfaces, which are indispensable for the ARPES measurements. The capabilities of the system and the importance of the in situ sample transfer between ARPES and laser MBE are demonstrated by studying the band structure of La0.6Sr0.4MnO3 thin films epitaxially grown on SrTiO3 substrates by laser MBE.</jats:p>