Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coutrot, D. B. N.

  • Google
  • 1
  • 4
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Effects of Tacticity on the Local Dynamics of Polypropylene Melts26citations

Places of action

Chart of shared publication
Zhang, Chuhong
1 / 1 shared
Arrighi, Valeria
1 / 16 shared
Telling, M. T. F.
1 / 3 shared
Triolo, R.
1 / 2 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Zhang, Chuhong
  • Arrighi, Valeria
  • Telling, M. T. F.
  • Triolo, R.
OrganizationsLocationPeople

article

Effects of Tacticity on the Local Dynamics of Polypropylene Melts

  • Coutrot, D. B. N.
  • Zhang, Chuhong
  • Arrighi, Valeria
  • Telling, M. T. F.
  • Triolo, R.
Abstract

We present a quasielastic neutron scattering (QENS) study of the effect of tacticity on the local dynamics of polypropylene (PP). QENS measurements were carried out on different spectrometers. On IN10 (ILL, France) we have measured the decrease of the elastic intensity as a function of temperature for atactic (a-PP), isotactic (i-PP), and syndiotactic (s-PP) PP. The results show that the polyproylene sub-Tgdynamics is independent of tacticity. Measurements of the dynamic incoherent structure factor were carried out on the spectrometers IRIS and OSIRIS (ISIS, UK) and, after Fourier transform, the intermediate scattering functions were computed and analyzed. For all samples investigated, the intermediate scattering functions I(Q,t) show good overlap using shift factors that are close to those reported in the literature. Detailed analysis of the incoherent dynamic structure factor in terms of fast and slow decay processes indicates that in the subpicoseconds regime molecular motion is independent of tacticity. The slower segmental process depends on the sample stereoregularity and, consistently with 13CNMRmeasurements and molecular dynamics simulations, isotactic PP relaxes faster than the other polymers, while s-PP is the slowest. Correlation times display a non-Arrhenius temperature dependence that is described by a Vogel–Fulcher–Tamman relationship, with parameters that depend on tacticity. Thus the ratio between the correlation times is temperature dependent, and while the dynamic behavior of the samples is very similar at 460 K, considerable differences are observed at lower temperature.

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • melt
  • molecular dynamics
  • neutron scattering
  • tacticity