Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Demand, Marc

  • Google
  • 1
  • 4
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Tunable remanent state resonance frequency in arrays of magnetic nanowires58citations

Places of action

Chart of shared publication
Piraux, Luc
1 / 37 shared
Encinas, Armando
1 / 10 shared
Huynen, Isabelle
1 / 30 shared
Vila, Laurent
1 / 37 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Piraux, Luc
  • Encinas, Armando
  • Huynen, Isabelle
  • Vila, Laurent
OrganizationsLocationPeople

article

Tunable remanent state resonance frequency in arrays of magnetic nanowires

  • Demand, Marc
  • Piraux, Luc
  • Encinas, Armando
  • Huynen, Isabelle
  • Vila, Laurent
Abstract

<jats:p>The zero-field microwave absorption, or natural ferromagnetic resonance, spectra in arrays of electrodeposited magnetic nanowires is studied as a function of the saturation magnetization of NiCu, NiFe, CoNiFe, and CoFe alloys of several compositions. Measurements show that due to the shape anisotropy, these systems present strong absorption peaks in the absence of an applied magnetic field in the GHz range due to the ferromagnetic resonance. Furthermore, the zero-field resonance frequency is observed to be independent of the wire diameter and density as well as the magnetic history and its value depends only on the material, through the saturation magnetization and the gyromagnetic factor. It is shown that, using different electrolytic solutions and depositing at different electrostatic potentials, the alloy composition can be varied and the remanent state resonance frequency can be tailored quasicontinuously between 4 and 31 GHz.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • wire
  • magnetization
  • saturation magnetization
  • alloy composition