Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Passerini, S.

  • Google
  • 17
  • 92
  • 399

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2023High-capacity Li4Ti5O12-C thick ceramic electrodes manufactured by powder injection mouldingcitations
  • 2020Structure rearrangements induced by lithium insertion in metal alloying oxide mixed spinel structure studied by x-ray absorption near-edge spectroscopy17citations
  • 2020Towards Advanced Sodium-Ion Batteries: Green, Low-Cost and High-Capacity Anode Compartment Encompassing Phosphorus/Carbon Nanocomposite as the Active Material and Aluminum as the Current Collector12citations
  • 2020Initial lithiation of carbon-coated zinc ferrite anodes studied by in-situ X-ray absorption spectroscopy7citations
  • 2020Assessment on the Use of High Capacity “Sn$_{4}$P$_{3}$”/NHC Composite Electrodes for Sodium-Ion Batteries with Ether and Carbonate Electrolytescitations
  • 2019Structure rearrangements induced by lithium insertion in metal alloying oxide mixed spinel structure studied by x-ray absorption near-edge spectroscopy17citations
  • 2019Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries103citations
  • 2017Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based Semi Solid Flow Batteries23citations
  • 2017Physicochemical and electrochemical investigations of the ionic liquid N-butyl -N-methyl-pyrrolidinium 4,5-dicyano-2-(trifluoromethyl) imidazolecitations
  • 2017Towards aging resistant lithium polymer batteries for safe wide temperature applicationscitations
  • 2017Safe and Highly Conducting Polymer Electrolytes for Ageing Resistant Li-ion Energy Storagecitations
  • 2016High temperature stable separator for lithium batteries based on SiO² and hydroxypropyl guar gumcitations
  • 2016A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution54citations
  • 2016Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes158citations
  • 2015A Comparative Study of Layered Transition Metal Oxide Cathodes for Application in Sodium-Ion Batterycitations
  • 2015Ionic Liquid Electrolyte for Lithium Oxygen and Lithium Ion Oxygen Cellcitations
  • 2002Magnetic resonance studies of chemically intercalated LixV2O5 aerogels8citations

Places of action

Chart of shared publication
Sotomayor, M. E.
1 / 3 shared
Levenfeld, B.
1 / 3 shared
Kim, G. T.
1 / 1 shared
Varzi, A.
1 / 1 shared
Varez, A.
1 / 2 shared
Romero-Garcia, I.
1 / 1 shared
Minicucci, M.
3 / 8 shared
Di Cicco, A.
3 / 12 shared
Bresser, D.
5 / 6 shared
Nobili, F.
3 / 12 shared
Gunnella, R.
3 / 10 shared
Trapananti, A.
3 / 9 shared
Rezvani, Sj
2 / 6 shared
Ciambezi, M.
3 / 3 shared
Mijit, E.
1 / 2 shared
Nannarone, S.
2 / 4 shared
G., Marrani A.
1 / 3 shared
Quartarone, E.
1 / 12 shared
Tealdi, C.
1 / 5 shared
Kuenzel, M.
1 / 1 shared
Eisenmann, T.
1 / 2 shared
Callegari, D.
1 / 6 shared
Brutti, S.
1 / 7 shared
Maroni, F.
1 / 2 shared
Schmuch, R.
1 / 1 shared
Hasa, I.
2 / 2 shared
Pollok, K.
1 / 4 shared
Moon, H.
1 / 2 shared
Palaniselvam, T.
1 / 1 shared
Santhosha, A. L.
1 / 1 shared
Winter, M.
1 / 12 shared
Mukundan, C.
1 / 1 shared
Goktas, M.
1 / 1 shared
Adelhelm, P.
1 / 2 shared
Langenhorst, F.
1 / 5 shared
Ruttert, M.
1 / 1 shared
Mijiti, Y.
1 / 2 shared
Rezvani, S. J.
1 / 5 shared
Meligrana, G.
1 / 21 shared
Colo, F.
1 / 17 shared
Fantini, S.
1 / 4 shared
Nair, J. R.
1 / 8 shared
Simonetti, E.
1 / 2 shared
Moreno, M.
1 / 12 shared
Gerbaldi, C.
1 / 47 shared
Lin, R.
3 / 11 shared
Appetecchi, G. B.
3 / 11 shared
Kazzazi, A.
1 / 1 shared
Bella, F.
1 / 49 shared
Dou, X.
1 / 2 shared
Mugele, Frieder
1 / 8 shared
Buchholz, D.
2 / 5 shared
Narayanan, A.
1 / 3 shared
Duits, Michael
1 / 12 shared
Wijnperle, D.
1 / 1 shared
Vaalma, C.
1 / 1 shared
Di Lecce, D.
1 / 9 shared
Wolff, C.
1 / 2 shared
Carvalho, Dv
1 / 1 shared
Kim, G-T
1 / 1 shared
Ochel, A.
1 / 1 shared
Meligrana, Giuseppina
2 / 19 shared
Gerbaldi, Claudio
2 / 59 shared
Porcarelli, Luca
1 / 16 shared
Falco, Marisa
2 / 13 shared
Bella, Federico
2 / 45 shared
Nair, Jijeesh Ravi
2 / 29 shared
Colo, Francesca
2 / 10 shared
Carvalho, D. V.
1 / 1 shared
Loeffler, N.
1 / 1 shared
Kim, G.-T.
1 / 1 shared
Tsiouvaras, N.
2 / 2 shared
Mueller, F.
1 / 3 shared
-K., Sun Y.
1 / 2 shared
Scrosati, B.
2 / 19 shared
Reiter, J.
2 / 3 shared
A., Elia G.
2 / 9 shared
Hassoun, J.
2 / 26 shared
Ulissi, U.
2 / 3 shared
Jeong, S.
1 / 3 shared
Hassoun, Jusef
2 / 56 shared
Kwak, W. J.
1 / 1 shared
Elia, G. A.
1 / 3 shared
Muller, F.
1 / 3 shared
Oberhumer, P.
1 / 1 shared
Sun, Y. K.
1 / 4 shared
Alleyne, F. S.
1 / 3 shared
Flowers, J.
1 / 1 shared
Smyrl, W.
1 / 1 shared
Greenbaum, S. G.
1 / 1 shared
Stallworth, P. E.
1 / 1 shared
Johnson, F. S.
1 / 1 shared
Chart of publication period
2023
2020
2019
2017
2016
2015
2002

Co-Authors (by relevance)

  • Sotomayor, M. E.
  • Levenfeld, B.
  • Kim, G. T.
  • Varzi, A.
  • Varez, A.
  • Romero-Garcia, I.
  • Minicucci, M.
  • Di Cicco, A.
  • Bresser, D.
  • Nobili, F.
  • Gunnella, R.
  • Trapananti, A.
  • Rezvani, Sj
  • Ciambezi, M.
  • Mijit, E.
  • Nannarone, S.
  • G., Marrani A.
  • Quartarone, E.
  • Tealdi, C.
  • Kuenzel, M.
  • Eisenmann, T.
  • Callegari, D.
  • Brutti, S.
  • Maroni, F.
  • Schmuch, R.
  • Hasa, I.
  • Pollok, K.
  • Moon, H.
  • Palaniselvam, T.
  • Santhosha, A. L.
  • Winter, M.
  • Mukundan, C.
  • Goktas, M.
  • Adelhelm, P.
  • Langenhorst, F.
  • Ruttert, M.
  • Mijiti, Y.
  • Rezvani, S. J.
  • Meligrana, G.
  • Colo, F.
  • Fantini, S.
  • Nair, J. R.
  • Simonetti, E.
  • Moreno, M.
  • Gerbaldi, C.
  • Lin, R.
  • Appetecchi, G. B.
  • Kazzazi, A.
  • Bella, F.
  • Dou, X.
  • Mugele, Frieder
  • Buchholz, D.
  • Narayanan, A.
  • Duits, Michael
  • Wijnperle, D.
  • Vaalma, C.
  • Di Lecce, D.
  • Wolff, C.
  • Carvalho, Dv
  • Kim, G-T
  • Ochel, A.
  • Meligrana, Giuseppina
  • Gerbaldi, Claudio
  • Porcarelli, Luca
  • Falco, Marisa
  • Bella, Federico
  • Nair, Jijeesh Ravi
  • Colo, Francesca
  • Carvalho, D. V.
  • Loeffler, N.
  • Kim, G.-T.
  • Tsiouvaras, N.
  • Mueller, F.
  • -K., Sun Y.
  • Scrosati, B.
  • Reiter, J.
  • A., Elia G.
  • Hassoun, J.
  • Ulissi, U.
  • Jeong, S.
  • Hassoun, Jusef
  • Kwak, W. J.
  • Elia, G. A.
  • Muller, F.
  • Oberhumer, P.
  • Sun, Y. K.
  • Alleyne, F. S.
  • Flowers, J.
  • Smyrl, W.
  • Greenbaum, S. G.
  • Stallworth, P. E.
  • Johnson, F. S.
OrganizationsLocationPeople

article

Magnetic resonance studies of chemically intercalated LixV2O5 aerogels

  • Alleyne, F. S.
  • Flowers, J.
  • Smyrl, W.
  • Greenbaum, S. G.
  • Stallworth, P. E.
  • Johnson, F. S.
  • Passerini, S.
Abstract

7Li, 51V solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) measurements have been performed upon chemically lithiated LixV2O5 aerogels, with compositions of 1.00<x<5.84. These compounds can intercalate reversibly large amounts of Li+ and, therefore, are of interest as battery cathodes. Still, the mechanism regarding the electron transfer from an inserted lithium metal to a host aerogel V2O5 and details regarding the lithium cation environments are not fully understood. LixV2O5 crystals are known to exhibit various structural phase changes and, when multiple phases are present, the capability of the material to intercalate reversibly appears to be adversely affected. On the other hand, aerogels have no such multiphase behavior and aerogel based cathodes exhibit greater stability upon cycling. NMR shows that neither the structure nor the dynamics vary greatly with the amount of lithium content, and that the lithiated aerogel is best described as a single-phase material. Characterization of lithium and vanadium sites is performed through analysis of both NMR and EPR spectra. 7Li line shapes are affected by first-order quadrupolar, magnetic dipolar interactions and motional narrowing. At and above room temperature, relaxation is governed primarily by a quadrupolar mechanism. NMR derived activation energies and diffusion coefficients are different from those of bronzes and electrochemically intercalated V2O5. 51V NMR lines, indicative of the presence of V5+ at all compositions, undergo diamagnetic shifts of up to about 50 ppm with an increase in lithium content. These results imply the presence of oxidized impurities or electronic charge delocalization. Additionally, EPR measurements provide evidence of VO2+ impurities and indirect evidence of nonbridging oxygen at high lithium contents.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • Oxygen
  • Lithium
  • electron spin resonance spectroscopy
  • activation
  • Nuclear Magnetic Resonance spectroscopy
  • bronze
  • vanadium