People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Swain, M. V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2012A method to determine site-specific, anisotropic fracture toughness in biological materialscitations
- 2009Nanoindentation of ion-implanted crystalline germaniumcitations
- 2009Effect of microstructure upon elastic behaviour of human tooth enamelcitations
- 2008Thickness-dependent phase transformation in nanoindented germanium thin filmscitations
- 2004Phase transformations induced in relaxed amorphous silicon by indentation at room temperaturecitations
- 2003In situ electrical characterization of phase transformations in Si during indentationcitations
- 2003Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritiscitations
- 2002In-situ electrical characterization of Si during nanoindentation
- 2001Mechanical deformation in silicon by micro-indentationcitations
- 2000Transmission electron microscopy observation of deformation microstructure under spherical indentation in siliconcitations
Places of action
Organizations | Location | People |
---|
article
Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon
Abstract
<p>Spherical indentation of crystalline silicon has been studied using cross-sectional transmission electron microscopy (XTEM). Indentation loads were chosen below and above the yield point for silicon to investigate the modes of plastic deformation. Slip planes are visible in the XTEM micrographs in both indentation loads studied. A thin layer of polycrystalline material has been identified (indexed as Si-XII from diffraction patterns) on the low-load indentation. The higher-load indentation revealed a large region of amorphous silicon. The sequence of structural deformation by indentation in silicon has been observed with the initial deformation mechanism being slip until phase transformations can take place.</p>