Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Finney, Charles

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Modeling nonlinear stress strain behaviour of 6000 series aluminum alloys under cyclic loading1citations

Places of action

Chart of shared publication
Georgantzia, Evangelia
1 / 10 shared
Robinson, Andrew
1 / 6 shared
Kashani, Mohammad Mehdi
1 / 17 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Georgantzia, Evangelia
  • Robinson, Andrew
  • Kashani, Mohammad Mehdi
OrganizationsLocationPeople

article

Modeling nonlinear stress strain behaviour of 6000 series aluminum alloys under cyclic loading

  • Finney, Charles
  • Georgantzia, Evangelia
  • Robinson, Andrew
  • Kashani, Mohammad Mehdi
Abstract

<p>Prior studies examining the nonlinear material properties of 6000 series aluminum alloys have predominantly concentrated on analyzing the stress-strain characteristics of these materials under monotonic tensile loading. Limited research has been conducted on their behavior under cyclic loading conditions. To address these gaps, a series of monotonic tensile and variable increasing amplitude cyclic loading tests was conducted on coupons made from 6082-T6, 6063-T6, and 6060-T5 aluminum alloys. The experimental results revealed that as strain amplitude increased the material showed isotropic strain hardening. This combined with the adequate hysteretic energy dissipation capacity demonstrates their potential advantage to be used as in structural components in earthquake prone regions. The experimental results are used to calibrate the material parameters of the uniaxial Giuffrè-Menegotto-Pinto constitutive model to be able to predict the nonlinear stress-strain behavior under monotonic and cyclic loading. Furthermore, using fiber element modeling in OpenSees software, employing a modified Giuffrè-Menegotto-Pinto model, the flexural buckling performance of 6082-T6 aluminum alloy columns is analyzed. The results are compared with existing experimental and finite element data, demonstrating the accuracy of the model in predicting the flexural buckling behavior.</p>

Topics
  • impedance spectroscopy
  • aluminium
  • stress-strain behavior
  • isotropic