People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kashani, Mohammad Mehdi
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Seismic performance of resilient self-centering bridge piers equipped with SMA barscitations
- 2024Modeling nonlinear stress strain behaviour of 6000 series aluminum alloys under cyclic loadingcitations
- 2024Testing and numerical modelling of circular stainless steel reinforced concrete columnscitations
- 2024Inelastic buckling of reinforcing bars: a state-of-the-art review of existing models and opportunities for future researchcitations
- 2024On the use of aluminium alloys in sustainable design, construction, and rehabilitation of bridges: emerging applications and future opportunitiescitations
- 2023Monitoring seismic damage via Accelerometer data alone using Volterra series and genetic algorithm
- 2023Impact of as-recorded mainshock-aftershock excitations on seismic fragility of corrosion-damaged RC framescitations
- 2023Monotonic and cyclic behaviour of 6082-T6 aluminium alloycitations
- 2023Modelling nonlinear dynamic behaviour of rocking bridge piers with shape memory alloyscitations
- 2022Influence of ground motion type on nonlinear seismic behaviour and fragility of corrosion-damaged reinforced concrete bridge pierscitations
- 2022Seismic Performance of Precast Post-Tensioned Segmental Bridge Piers with Shape Memory Alloy (SMA) Bars
- 2021Compressive stress-strain behaviour of stainless steel reinforcing bars with the effect of inelastic bucklingcitations
- 2019Influence of bar diameter on low-cycle fatigue degradation of reinforcing barscitations
- 2018Probabilistic seismic vulnerability analysis of corroded reinforced concrete frames including spatial variability of pitting corrosioncitations
- 2017Size effect on inelastic buckling behaviour of accelerated pitted corroded bars in porous mediacitations
- 2016Assessment of U-type wrought iron railway bridgescitations
- 2016A multi-mechanical nonlinear fibre beam-column model for corroded columnscitations
Places of action
Organizations | Location | People |
---|
article
Modeling nonlinear stress strain behaviour of 6000 series aluminum alloys under cyclic loading
Abstract
<p>Prior studies examining the nonlinear material properties of 6000 series aluminum alloys have predominantly concentrated on analyzing the stress-strain characteristics of these materials under monotonic tensile loading. Limited research has been conducted on their behavior under cyclic loading conditions. To address these gaps, a series of monotonic tensile and variable increasing amplitude cyclic loading tests was conducted on coupons made from 6082-T6, 6063-T6, and 6060-T5 aluminum alloys. The experimental results revealed that as strain amplitude increased the material showed isotropic strain hardening. This combined with the adequate hysteretic energy dissipation capacity demonstrates their potential advantage to be used as in structural components in earthquake prone regions. The experimental results are used to calibrate the material parameters of the uniaxial Giuffrè-Menegotto-Pinto constitutive model to be able to predict the nonlinear stress-strain behavior under monotonic and cyclic loading. Furthermore, using fiber element modeling in OpenSees software, employing a modified Giuffrè-Menegotto-Pinto model, the flexural buckling performance of 6082-T6 aluminum alloy columns is analyzed. The results are compared with existing experimental and finite element data, demonstrating the accuracy of the model in predicting the flexural buckling behavior.</p>