People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ravenshorst, Geert
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Combining Architectural Conservation and Seismic Strengthening in the Wood-Based Retrofitting of a Monumental Timber Roofcitations
- 2021Connection of timber foundation piles to concrete extension piles
- 2021An analytical model describing the in-plane behaviour of timber diaphragms strengthened with plywood panelscitations
- 2021Dissipative properties of timber diaphragms strengthened with plywood panels
- 2021An integral approach for the assessment of timber pile foundations
- 2021Comparing In-Plane Equivalent Shear Stiffness of Timber Diaphragms Retrofitted with Light and Reversible Wood-Based Techniquescitations
- 2021Analytical and numerical modelling of the in-plane response of timber diaphragms retrofitted with plywood panels
- 2021Optimizing Seismic Capacity of Existing Masonry Buildings by Retrofitting Timber Floorscitations
- 2020Experimental and analytical evaluation of the in-plane behaviour of as-built and strengthened traditional wooden floorscitations
- 2017Test report on cyclic behaviour of replicated timber diaphragms representing a detached house
Places of action
Organizations | Location | People |
---|
article
Comparing In-Plane Equivalent Shear Stiffness of Timber Diaphragms Retrofitted with Light and Reversible Wood-Based Techniques
Abstract
In-plane behavior of timber diaphragms is usually characterized by means of an equivalent shear stiffness. However, this value depends on how the stiffness of the floors is evaluated from the experimental tests. Although an increasing number of research studies have provided a deeper insight into the seismic characterization of as-built and retrofitted timber diaphragms, the use of different standards or assumptions have led to inhomogeneous and not comparable results. With a focus on light, reversible, wood-based strengthening techniques applied to existing diaphragms, this study proposes a uniform and simple method based on the calculation of the secant stiffness of the floors at reference drifts. By means of this procedure, relevant research studies from the literature were compared, and homogeneous, indicative values of equivalent shear stiffness were proposed for each considered strengthening technique. These results can contribute to a more aware and reliable use, design, and linear modeling of wood-based retrofitting solutions for existing timber diaphragms. ; Bio-based Structures & Materials