People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Unluer, Cise
University of Glasgow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Strain hardening magnesium-silicate-hydrate composites with extremely low fiber dosage of 0.5% by volumecitations
- 2023MgO‐based cements – Current status and opportunitiescitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO2 sequestrationcitations
- 2022New frontiers in sustainable cementscitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO 2 sequestrationcitations
- 2021Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seedingcitations
- 2021Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes subjected to high temperaturescitations
- 2021Thermal and mechanical performance of a novel 3D printed macro-encapsulation method for phase change materialscitations
- 2020Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slagcitations
- 2020Mechanical properties and flexural behavior of sustainable bamboo fiber-reinforced mortarcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO3 and NaClcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO 3 and NaClcitations
- 2018Development of MgO concrete with enhanced hydration and carbonation mechanismscitations
- 2017Performance and microstructural development of MgO-SiO 2 binders under different curing conditionscitations
- 2017Influence of nucleation seeding on the performance of carbonated MgO formulationscitations
- 2017Performance and microstructural development of MgO-SiO2 binders under different curing conditionscitations
Places of action
Organizations | Location | People |
---|
article
Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO3 and NaCl
Abstract
The performance of reactive MgO cement (RMC)-based concrete formulations is determined by the carbonation process, which is hindered by the inadequate CO<sub>2</sub><br/> dissolution in the pore solution. This study addresses the improvement of carbonation and associated performance of carbonated RMC-based concrete samples via the introduction of sodium bicarbonate (SBC) and sodium chloride (SC). The use of these additives increases the initial pH, which accelerates the dissolution of CO<sub>2 </sub>within the pore solution. The influence of SBC and SC on the progress of hydration is evaluated by isothermal calorimetry and pH measurements. Mechanical performance results are supported by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), which identify the formation and morphology of final phases. The presence of SBC and SC enhances the dissolution of CO<sub>2</sub> and improves the content and morphology of carbonate phases, leading to the formation of a strong carbonate network that increases sample performance by >100%at 28 days.