People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Diambra, Andrea
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Lateral bearing factors and elastic stiffness factors for robotic CPT p-y module in undrained claycitations
- 2022Axial shear friction of polypropylene pipes against granular beds
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Stiffness of granular soils under long-term multiaxial cyclic loadingcitations
- 20213D FE-informed laboratory soil testing for the design of offshore wind turbine monopilescitations
- 2021Stiffness of artificially cemented sands:insight on characterisation through empirical power relationshipscitations
- 2021Stiffness of artificially cemented sandscitations
- 2020Small to large strain mechanical behaviour of an alluvium stabilised with low carbon secondary mineralscitations
- 2020Polypropylene pipe interface strength on marine sandy soils with varying coarse fractioncitations
- 2019Strength anisotropy of fibre-reinforced sands under multiaxial loadingcitations
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Stiffness of lightly cemented sand under multiaxial loadingcitations
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2019Effect of orientation of principal stress axes on cyclic liquefaction potential of soils
- 2018Compacted Chalk Putty-Cement Blends:Mechanical Properties and Performancecitations
- 2018Compacted Chalk Putty-Cement Blendscitations
- 2018Stress and time-dependent properties of crushed chalkcitations
- 2018Time and stress dependent strength and stiffness of reconstituted chalkcitations
- 2017Particle soil crushing: passive detection and interpretation
- 2017Evolution of elastic properties of granular soils under very large of number of multiaxial stress cycles
- 2016Evolution of small strain stiffness of granular soils with a large number of small loading cycles in the 3-D multiaxial stress space
- 2016Small strain stiffness evolution of reconstituted medium density chalk
- 2010Static liquefaction of fibre reinforced sand under monotonic loadingcitations
Places of action
Organizations | Location | People |
---|
article
Compacted Chalk Putty-Cement Blends
Abstract
Compaction and Portland cement addition are amongst promising ground improvement procedures to enhance the mechanical properties of chalk putty. Present investigation intends to compute the impact of Portland cement content and dry density on the mechanical properties (stiffness and strength) and performance (durability) of compacted chalk putty-cement mixes. The most significant addition to knowledge is quantifying the accumulated loss of mass (ALM) after wet/dry cycles, initial shear modulus (G0) and unconfined compressive strength (qu) as a function of the porosity/cement index. In addition, it is empirically revealed the existence of an exclusive relation connecting accumulated loss of mass divided by the number of wetting/drying cycles and porosity/cement index. Besides, a power relation was found between initial shear modulus at small strains after wet-dry cycles (G0) and average loss of mass after each cycle. This broadens the applicability of such index by demonstrating it controls not only strength and stiffness but also endurance performance of compacted chalk putty-Portland cement blends.