People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, Mag
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2019Bond durability of CFRP laminates-to-steel joints subjected to freeze-thawcitations
- 2017Aging of some GFRP-concrete joints under external pressure
- 2017Bond characteristics of CFRP-to-steel jointscitations
- 2016Influence of External Compressive Stresses on the Performance of GFRP-to-Concrete Interfaces Subjected to Aggressive Environments: An Experimental Analysiscitations
- 2015Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfacescitations
- 2015Bond-slip model for FRP-to-concrete bonded joints under external compressioncitations
- 2014An experimental study of GFRP-to-concrete interfaces submitted to humidity cyclescitations
- 2014Composites and FRP-Strengthened Beams Subjected to Dry/Wet and Salt Fog Cyclescitations
- 2014On estimates of durability of FRP based on accelerated testscitations
- 2013Bond-slip on CFRP/GFRP-to-concrete joints subjected to moisture, salt fog and temperature cyclescitations
- 2013Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterioncitations
- 2013A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP compositescitations
- 2013Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfacescitations
- 2012Double shear tests to evaluate the bond strength between GFRP/concrete elementscitations
- 2010Effects of exposure to saline humidity on bond between GFRP and concretecitations
- 2010Monotonic axial behavior and modelling of RC circular columns confined with CFRPcitations
- 2006Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRPcitations
Places of action
Organizations | Location | People |
---|
article
Composites and FRP-Strengthened Beams Subjected to Dry/Wet and Salt Fog Cycles
Abstract
Carbon (CFRP) and glass (GFRP) fiber-reinforced composites of epoxy matrix are considered in the study, with greater emphasis on GFRP. Accelerated conditioning was imposed in the form of salt fog cycles, hygrothermal cycles (tap water), and tidal-like cycles (aqueous solution of NaCl, 50g/L), both on laminate composites and on beams externally reinforced with fiber-reinforced polymers (FRP) on their soffit. Freeze/thaw cycles were also applied to the study of degradation of the laminates. Mechanical tests showed degradation due to damage to the matrices, fiber-matrix linkage or bond between FRP and concrete. Several advanced techniques were used to interpret the results and enable better understanding of the phenomenological data. Changes on the glass transition temperature (Tg) of the epoxy matrix are reported as possible indicators of decrease of the tensile strength of the GFRP composite. Attention is given to the evolution of the relative values of the tensile strength of concrete and adhesive along time given their importance on the effectiveness of the FRP-adhesive-concrete joints. The results revealed, e.g.,that the more severe decrease of the carrying capacity of the beams was due to the salt fog cycles in the beams strengthened with CFRP.